Propiedades fisicoquímicas, antioxidantes y sensoriales de botanas de maíz con Brosimum alicastrum y su almacenamiento

Main Article Content

Jorge Carlos Canto-Pinto http://orcid.org/0000-0002-6133-056X
Alejandro Farfán-Coox http://orcid.org/0009-0005-4876-7344
Víctor Manuel Moo-Huchin http://orcid.org/0000-0002-9365-8922
David Abram Betancur-Ancona http://orcid.org/0000-0002-9206-3222
Ivanka Elena Ramírez de la Cruz http://orcid.org/0000-0001-6142-8631
Raciel Javier Estrada-León http://orcid.org/0000-0002-0987-9053
Luis Fernando Cuevas-Glory http://orcid.org/0000-0001-8361-1744

Resumen

Se analizan los efectos de adicionar harina de semilla de B. alicastrum (30% HR, p/p) a botanas de maíz con diferentes métodos de cocción sobre la aceptación, capacidad antioxidante y la estabilidad oxidativa. Asimismo, se evaluaron los cambios fisicoquímicos durante el almacenamiento de las botanas con mayor aceptación. Cuando se fríe, la botana HR/TSD (tortilla sin deshidratar) tuvo la mayor capacidad antioxidante (39.36 ± 0.61 mM Trolox/100 g), mientras que la botana HR/TD (tortilla deshidratada) exhibió mayor estabilidad oxidativa (<29 TOTOX). Al respecto, la botana frita HR/TSD tuvo la mayor aceptación. Durante el almacenamiento, la botana HR/TSD tuvo el menor índice de peróxido. La adición de harina de B. alicastrum a la botana de maíz frito mejora la aceptabilidad del consumidor y su almacenamiento.

Article Details

Como citar
CANTO-PINTO, Jorge Carlos et al. Propiedades fisicoquímicas, antioxidantes y sensoriales de botanas de maíz con Brosimum alicastrum y su almacenamiento. CIENCIA ergo-sum, [S.l.], v. 32, jul. 2024. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/20889>. Fecha de acceso: 25 jun. 2025 doi: https://doi.org/10.30878/ces.v32n0a20.
Sección
Ciencias naturales y agropecuarias

Citas

Al Faruq, A., Khatun, M. H. A., Azam, S. R., Sarker, M. S. H., Mahomud, M. S., & Jin, X. (2022). Recent advances in frying processes for plant-based foods. Food Chemistry Advances, 1, 100086. https://doi.org/10.1016/j.focha.2022.100086

Albertos, I., Martin-Diana, A. B., Sanz, M., Barat, J. M., Diez, A. M., Jaime, I., & Rico, D. (2016). Effect of high pressure processing or freezing technologies as pretreatment in vacuum fried carrot snacks. Innovative Food Science & Emerging Technologies, 33, 115-122. https://doi.org/10.1016/j.ifset.2015.11.004

AOAC International. (2005). Official methods of analysis of AOAC International. AOAC International. Maryland.
Babacan Cevik, S., Kahraman, K., & Ekici, L. (2022). Production of oven-baked wheat chips enriched with red lentil: an optimization study by response surface methodology. Journal of Food Science and Technology, 59(6), 2243-2254. https://doi.org/10.1007/s13197-021-05237-8

Caetano, P. K., Mariano-Nasser, F. A. D. C., MendonÇa, V. Z. D., Furlaneto, K. A., Daiuto, E. R., & Vieites, R. L. (2017). Physicochemical and sensory characteristics of sweet potato chips undergoing different cooking methods. Food Science and Technology, 38(3), 434-440. https://doi.org/10.1590/1678-457X.08217

Campus-Baypoli, O. N., Rosas-Burgos, E. C., Torres-Chávez, P. I., Ramírez-Wong, B., & Serna-Saldívar, S. O. (1999). Physiochemical changes of starch during maize tortilla production. Starch-Stärke, 51(5), 173-177. https://doi.org/10.1002/(SICI)1521-379X(199905)51:5<173::AID-STAR173>3.0.CO;2-B

De la Parra, C., Serna Saldivar, S. O., & Liu, R. H. (2007). Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. Journal of Agricultural and Food Chemistry, 55(10), 4177-4183. https://doi.org/10.1021/jf063487p

Dong, L., Qiu, C.-Y., Wang, R.-C., Zhang, Y., Wang, J., Liu, J.-m.,... & Wang, S. (2022). Effects of air frying on french fries: The Indication role of physicochemical properties on the formation of Maillard Hazards, and the changes of starch digestibility. Frontiers in Nutrition, 9, 889901. https://doi.org/10.3389/fnut.2022.889901

Elouafy, Y., El Idrissi, Z. L., El Yadini, A., Harhar, H., Alshahrani, M. M., Al Awadh, A. A.,... & Tabyaoui, M. (2022). Variations in antioxidant capacity, oxidative stability, and physicochemical quality parameters of walnut (Juglans regia) oil with roasting and accelerated storage conditions. Molecules, 27(22), 7693. https://doi.org/10.3390/molecules27227693

García-Pérez, A., Muñoz-Hernández, J. E., Guzmán-Corona, C., Cerón-García, A., Ozuna, C., & Sosa-Morales, M. E. (2019). Performance of individual antioxidants and their blend during repeated frying of tortilla chips. Journal of Food Processing and Preservation, 43(12), e14263. https://doi.org/10.1111/jfpp.14263

Gharby, S., Oubannin, S., Ait Bouzid, H., Bijla, L., Ibourki, M., Gagour, J.,... & Lee, L.-H. (2022). An overview on the use of extracts from medicinal and aromatic plants to improve nutritional value and oxidative stability of vegetable oils. Foods, 11(20), 3258. https://doi.org/10.3390/foods11203258

Gutiérrez, A. G. Q., Rosendo, G. G., Navarro, A. S., Navarrete, G. E. R., Sánchez, J. V., & Rivera, G. B. (2014). Caracterización de una tortilla tostada elaborada con maíz (Zea mays) y alga (Ulva clathrata) como prospecto de alimento funcional. Revista Española de Nutrición Comunitaria, 20(1), 22-28. https://doi.org/10.7400/RENC.2014.01.1.5005

Kumar, R., Xavier, K. M., Lekshmi, M., Balange, A., & Gudipati, V. (2018). Fortification of extruded snacks with chitosan: Effects on techno functional and sensory quality. Carbohydrate Polymers, 194, 267-273. https://doi.org/10.1016/j.carbpol.2018.04.050

Liu, Y., Wang, Y., Cao, P., & Liu, Y. (2018). Combination of gas chromatography-mass spectrometry and electron spin resonance spectroscopy for analysis of oxidative stability in soybean oil during deep-frying process. Food Analytical Methods, 11(5), 1485-1492. https://doi.org/10.1007/s12161-017-1132-7

Losoya-Sifuentes, C., Pinto-Jimenez, K., Cruz, M., Rodriguez-Jasso, R. M., Ruiz, H. A., Loredo-Treviño, A.,... & Belmares, R. (2023). Determination of Nutritional and Antioxidant Properties of Maya Nut Flour (Brosimum alicastrum) for Development of Functional Foods. Foods, 12(7), 1398. https://doi.org/10.3390/foods12071398

Mansour, H. M., El-Sohaimy, S. A., Zeitoun, A. M., & Abdo, E. M. (2022). Effect of natural antioxidants from fruit leaves on the oxidative stability of soybean oil during accelerated storage. Antioxidants, 11(9), 1691. https://doi.org/10.3390/antiox11091691

Mariscal-Moreno, R. M., Sánchez, K. R., & Cárdenas, J. d. D. F. (2022). Nixtamalization process affect maize tortillas storage quality. International Journal of Gastronomy and Food Science, 30, 100604. https://doi.org/10.1016/j.ijgfs.2022.100604

Mayo-Mayo, G., Navarrete-García, A., Maldonado-Astudillo, Y. I., Jiménez-Hernández, J., Santiago-Ramos, D., Arámbula-Villa, G.,... & Salazar, R. (2020). Addition of roselle and mango peel powder in tortilla chips: A strategy for increasing their functionality. Journal of Food Measurement and Characterization, 14(3), 1511-1519. https://doi.org/10.1007/s11694-020-00400-9

Mohammadi, M., Hajeb, P., Seyyedian, R., Mohebbi, G. H., & Barmak, A. (2013). Evaluation of oxidative quality parameters in imported edible oils in Iran. British Food Journal, 115(6), 789-795. https://doi.org/10.1108/BFJ-Feb-2011-0035

Mohd-Esa, N., Hern, F. S., Ismail, A., & Yee, C. L. (2010). Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chemistry, 122(4), 1055-1060. https://doi.org/10.1016/j.foodchem.2010.03.074

Moo-Huchin, V., Canto-Pinto, J., Cuevas-Glory, L., Sauri-Duch, E., Pérez-Pacheco, E., & Betancur-Ancona, D. (2019). Effect of extraction solvent on the phenolic compounds content and antioxidant activity of Ramon nut (Brosimum alicastrum). Chemical Papers, 73(7), 1647-1657. https://doi.org/10.1007/s11696-019-00716-x

Moo-Huchin, V. M., Góngora-Chi, G. J., Sauri-Duch, E., Canto-Pinto, J. C., Betancur-Ancona, D., & Ramón-Canul, L. G. (2021). Tortilla de maíz adicionado con harina de Brosimum alicastrum: propiedades fisicoquímicas y actividad antioxidante. CIENCIA ergo-sum, 28(3), 1-12. https://doi.org/ https://doi.org/10.30878/ces.v28n3a1

Moo-Huchin, V. M., Moo-Huchin, M. I., Estrada-León, R. J., Cuevas-Glory, L., Estrada-Mota, I. A., Ortiz-Vázquez, E.,... & Sauri-Duch, E. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166(1), 17-22. https://doi.org/10.1016/j.foodchem.2014.05.127

Nagpal, T., Yadav, V., Khare, S. K., Siddhanta, S., & Sahu, J. K. (2023). Monitoring the lipid oxidation and fatty acid profile of oil using algorithm-assisted surface-enhanced Raman spectroscopy. Food Chemistry, 136746. https://doi.org/10.1016/j.foodchem.2023.136746

Özcan, M. M., İpek, D., Ghafoor, K., Al Juhaimi, F., Uslu, N., Babiker, E. E.,... & Alsawmahi, O. N. (2021). Physico-chemical and sensory properties of chips produced using different lupin (Lupinus albus L.) flour formulations and cooking methods. International Journal of Food Science & Technology, 56(6), 2780-2788. https://doi.org/10.1111/ijfs.14913

Ozer, H. K. (2017). Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): Comparison with commercial nuts. International Journal of Food Properties, 20(11), 2772-2781. https://doi.org/10.1080/10942912.2016.1252389

Rababah, T. M., Yücel, S., Ereifej, K. I., Alhamad, M. N., Al-Mahasneh, M. A., Yang, W.,... & Ismaeal, K. (2011). Effect of grape seed extracts on the physicochemical and sensory properties of corn chips during storage. Journal of the American Oil Chemists' Society, 88(5), 631-637. https://doi.org/http://dx.doi.org/10.1007/s11746-011-1767-2

Raleng, A., Singh, N. J., Sarangi, P., Manojkumar, P., & Wahengbam, A. (2022). Standardization of frying time-temperature strategy for enhancing the quality and storability of chayote chips. Applied Food Research, 2(2), 100167. https://doi.org/10.1016/j.afres.2022.100167

Rohman, A., Che Man, Y., Ismail, A., & Hashim, P. (2011). Monitoring the oxidative stability of virgin coconut oil during oven test using chemical indexes and FTIR spectroscopy. International Food Research Journal, 18(1), 303-310.

Salami, A., Asefi, N., Kenari, R. E., & Gharekhani, M. (2020). Addition of pumpkin peel |extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. Journal of Food Measurement and Characterization, 14, 2433-2442. https://doi.org/10.1007/s11694-020-00491-4

Salazar, R., Arámbula-Villa, G., Luna-Bárcenas, G., Figueroa-Cárdenas, J., Azuara, E., & Vazquez-Landaverde, P. A. (2014). Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT-Food Science and Technology, 56(1), 87-92. https://doi.org/10.1016/j.lwt.2013.10.046

Sattar, D. E. S., Ali, T. M., Soomro, U. A., & Hasnain, A. (2022). Functional, antioxidant, and sensory properties of a ready-to-eat wheat flour snack incorporated with germinated legume flour. Legume Science, e174. https://doi.org/10.1002/leg3.174

Schaich, K. (2014). Lipid co-oxidation of proteins: One size does not fit all. Inform, 25, 134-139.
Serna-Saldivar, S. O. (2021). Understanding the functionality and manufacturing of nixtamalized maize products. Journal of Cereal Science, 99, 103205. https://doi.org/10.1016/j.jcs.2021.103205

Serna-Saldivar, S. O., & Chuck-Hernandez, C. (2019). Food uses of lime-cooked corn with emphasis in tortillas and snacks. In S. O. Serna-Saldivar (Ed.), Corn (pp. 469-500). Elsevier. https://doi.org/10.1016/B978-0-12-811971-6.00017-6

Srivastava, Y., & Semwal, A. D. (2015). A study on monitoring of frying performance and oxidative stability of virgin coconut oil (VCO) during continuous/prolonged deep fat frying process using chemical and FTIR spectroscopy. Journal of Food Science and Technology, 52, 984-991. https://doi.org/10.1007/s13197-013-1078-8

Sugumaran, K., Anwar, N. Z. R., & Ghani, A. A. (2019). Effect of different processing methods on the physicochemical properties and sensory evaluations of sweet potatoes chips. Journal of Agrobiotechnology, 10(2), 51-63.

Teruel, M. D. R., Gordon, M., Linares, M. B., Garrido, M. D., Ahromrit, A., & Niranjan, K. (2015). A comparative study of the characteristics of french fries produced by deep fat frying and air frying. Journal of Food Science, 80(2), E349-E358. https://doi.org/10.1111/1750-3841.12753

Wu, G., Han, S., Zhang, Y., Liu, T., Karrar, E., Jin, Q.,... & Wang, X. (2022). Effect of phenolic extracts from Camellia oleifera seed cake on the formation of polar compounds, core aldehydes, and monoepoxy oleic acids during deep-fat frying. Food Chemistry, 372, 131143. https://doi.org/10.1016/j.foodchem.2021.131143

Yoong, M., & Rozaina, T. (2021). Effects of mangrove apple (Sonneratia caseolaris) fruit extract on oxidative stability of palm olein under accelerated storage. Food Research, 5(1), 461-470. https://doi.org/10.26656/fr.2017.5(1).445

Yuksel, F., Karaman, S., Gurbuz, M., Hayta, M., Yalcin, H., Dogan, M., & Kayacier, A. (2017). Production of deep-fried corn chips using stale bread powder: Effect of frying time, temperature and concentration. LWT-Food Science and Technology, 83(15), 235-242. https://doi.org/10.1016/j.lwt.2017.04.076

Zaghi, A. N., Barbalho, S. M., Guiguer, E. L., & Otoboni, A. M. (2019). Frying process: From conventional to air frying technology. Food Reviews International, 35(8), 763-777. https://doi.org/10.1080/87559129.2019.1600541