Producción masiva de microorganismos para la obtención de proteína sustentable con alto valor biológico

Main Article Content

Julián Gamboa-Delgado http://orcid.org/0000-0001-9041-1388
Julia Mariana Márquez-Reyes http://orcid.org/0000-0001-8632-2673
Daniel Enrique Godínez-Siordia http://orcid.org/0000-0002-0986-5874

Resumen

El presente artículo provee una revisión del estado actual del uso de microorganismos como insumos alimenticios, enfatizando grupos microbianos tales como levaduras, bacterias, cianobacterias y microalgas, las cuales muestran un alto potencial para ser cultivadas masivamente. Numerosos microorganismos presentan excelentes características nutricionales para humanos y para animales de cría. Los alimentos derivados de la pesca y agricultura tienen un papel primordial al satisfacer las actuales necesidades poblacionales; sin embargo, el crecimiento de la producción de estos insumos se verá restringido en el futuro debido a la sobrepesca y al límite de tierra arable disponible. Entre las diversas fuentes alternativas de nutrientes, la biomasa derivada de microorganismos ha sido considerada como un prometedor sustituto de las proteínas animales y vegetales.

Article Details

Como citar
GAMBOA-DELGADO, Julián; MÁRQUEZ-REYES, Julia Mariana; GODÍNEZ-SIORDIA, Daniel Enrique. Producción masiva de microorganismos para la obtención de proteína sustentable con alto valor biológico. CIENCIA ergo-sum, [S.l.], v. 30, n. 3, oct. 2022. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/17794>. Fecha de acceso: 29 nov. 2022
Sección
Espacio del divulgador

Citas

Ahmad, M. I., Farooq, S., Alhamoud, Y., Li, C., & Zhang, H. (2022). A review on mycoprotein: History, nutritional composition, production methods, and health benefits. Trends in Food Science and Technology, 121, 14-29.
Alloul, A., Spanoghe, J., Machado, D., & Vlaeminck, S. E. (2022). Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels. Microbial biotechnology, 15(1), 6-12.
An, B. K., Choi, Y. I., Kang, C. W., & Lee, K. W. (2018). Effects of dietary Corynebacterium ammoniagenes-derived single cell protein on growth performance, blood and tibia bone characteristics, and meat quality of broiler chickens. Journal of Animal and Feed Sciences, 27(2), 140-147.
Cai, M., Hui, W., Deng, X., Wang, A., Hu, Y., Liu, B, Chen, K., Liu, F., Tian, H., Li, H. & Li, J. (2022). Dietary Haematococcus pluvialis promotes growth of red swamp crayfish Procambarus clarkii (Girard, 1852) via positive regulation of the gut microbial co-occurrence network. Aquaculture, 737900.
Chavoshi, Z.Z., & Shariati, M. (2019) Lipid production in Dunaliella salina under autotrophic, heterotrophic, and mixotrophic conditions. Biologia 74, 1579–1590.
Chen, Y., Chi, S., Zhang, S., Dong, X., Yang, Q., Liu, H., Tan, B., & Xie, S. (2022). Evaluation of Methanotroph (Methylococcus capsulatus, Bath) bacteria meal on body composition, lipid metabolism, protein synthesis and muscle metabolites of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 547, 737517.
Choi, K. R., Yu, H. E., & Lee, S. Y. (2022). Microbial food: microorganisms repurposed for our food. Microbial Biotechnology, 15(1), 18-25.

Derbyshire, E. J., & Finnigan, T. J. (2022). Mycoprotein: A futuristic portrayal. In: Future Foods (pp. 287-303). Academic Press. Utah, USA.
El‐Sayed, A. F. M. (2021). Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Reviews in Aquaculture, 13(1), 676-705.
Finnigan, T., Needham, L., & Abbott, C. (2017). Mycoprotein: a healthy new protein with a low environmental impact. In: Sustainable protein sources (pp. 305-325). Academic Press. Utah, USA.
Gamboa-Delgado, J. (2022). Isotopic techniques in aquaculture nutrition: State of the art and future perspectives. Reviews in Aquaculture, 14(1), 456-476.
Gamboa-Delgado, J. & Márquez-Reyes J. M. (2018). Potential of microbial-derived nutrients for aquaculture development, Reviews in Aquaculture, 10(1), 224-246.
Gorgich, M., Martins, A. A., Mata, T. M., & Caetano, N. S. (2021). Composition, cultivation and potential applications of Chlorella zofingiensis–A comprehensive review. Algal Research, 60, 102508.
Hashempour-Baltork, F., Khosravi-Darani, K., Hosseini, H., Farshi, P., & Reihani, S. F. S. (2020). Mycoproteins as safe meat substitutes. Journal of Cleaner Production, 253, 119958.
Hosseini, S. M., Khosravi-Darani, K., Mohammadifar, M. A., & Nikoopour, H. (2009). Production of mycoprotein by Fusarium venenatum growth on modified vogel medium. Asian Journal of Chemistry, 21(5), 4017.
Leong, Y. K., & Chang, J. S. (2020). Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresource technology, 303, 122886.
Lim, H. R., Khoo, K. S., Chew, K. W., Chang, C. K., Munawaroh, H. S. H., Kumar, P. S., & Show, P. L. (2021). Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy. Environmental Pollution, 284, 117492.

Martínez‐Jerónimo, F., Flores‐Hernández, D. I., & Galindez‐Mayer, J. (2017). Formulation of an alternative culture medium for Arthrospira maxima (Spirulina) based on “tequesquite,” a traditional mineral resource. Journal of the World Aquaculture Society, 48(6), 887-897.
Moshood, T. D., Nawanir, G., & Mahmud, F. (2021). Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environmental Challenges, 5, 100207.
Nagarajan, D., Varjani, S., Lee, D. J., & Chang, J. S. (2021). Sustainable aquaculture and animal feed from microalgae–Nutritive value and techno-functional components. Renewable and Sustainable Energy Reviews, 150, 111549.
Nouska, C., Mantzourani, I., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., Akrida-Demertzi, K., Demertzis P., & Plessas, S. (2015). Saccharomyces cerevisiae and kefir production using waste pomegranate juice, molasses, and whey. Czech Journal of Food Sciences, 33, 77-282.
Olivares, J. A., Puyol, D., Melero, J. A., & Dufour, J. (2019). Wastewater treatment residues as resources for biorefinery products and biofuels. Elsevier. The Netherlands. 474 pp.
Øverland, M., Tauson, A.-H., Shearer, K., & Skrede, A., (2010) Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Archives of Animal Nutrition, 64:171–89.
Owsianiak, M., Pusateri, V., Zamalloa, C., de Gussem, E., Verstraete, W., Ryberg, M., & Valverde-Pérez, B. (2022). Performance of second-generation microbial protein used as aquaculture feed in relation to planetary boundaries. Resources, Conservation and Recycling, 180, 106158.
Patel, A. K., Singhania, R. R., Sim, S. J., & Di Dong, C. (2021). Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. Bioresource Technology, 320, 124421.

Pelczar, M.J., & Chan, E.C.S., (2010) Microbiology – An application based approach. Tata McGraw Hill, New Delhi, India, 919 pp.
Ramírez-Moreno, L., & Olvera-Ramírez R. (2006). Uso tradicional y actual de Spirulina sp. (Arthrospira sp.). Interciencia, 31(9), 657-663.
Ray, A., Nayak, M., & Ghosh, A. (2022). A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. Science of the Total Environment, 802, 149765.
Rumsey, G. L., Hughes, S. G., Smith, R. R., Kinsella, J. E., & Shetty, K. J. (1991) Digestibility and energy values of intact, disrupted and extracts from dried yeast fed to rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, 33, 185–193.
Sakarika, M., Ganigué, R., & Rabaey, K. (2022). Methylotrophs: from C1 compounds to food. Current Opinion in Biotechnology, 75, 102685.
Sarker, P. K., Gamble, M. M., Kelson S., & Kapuscinski A. R. (2015). Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquaculture Nutrition, 22(1), 109-119.
Suman, G., Nupur, M., Anuradha, S., & Pradeep, B. (2015). Single cell protein production: a review. International Journal of Current Microbiology and Applied Sciences, 4(9), 251-262.
Uwineza, C., Mahboubi, A., Atmowidjojo, A., Ramadhani, A., Wainaina, S., Millati, R., Wikandari, R., Niklasson, C., & Taherzadeh, M. J. (2021). Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. Bioresource technology, 337, 125410.
Villarreal-Cavazos, D. A., Ricque-Marie, D., Nieto-López, M., Tapia-Salazar, M., Lemme, A., Gamboa-Delgado, J., & Cruz-Suárez, L. E. (2019). Apparent digestibility of amino acids in feedstuffs used in diets for the Pacific white shrimp, Penaeus vannamei. Ciencias marinas, 45(3), 91-100.
Wang, S. K., Tian, Y. T., Dai, Y. R., Wang, D., Liu, K. C., & Cui, Y. H. (2022). Development of an alternative medium via completely replaces the medium components by mixed wastewater and crude glycerol for efficient production of docosahexaenoic acid by Schizochytrium sp. Chemosphere, 291, 132868.
Wang, Y., Li, M., Filer, K., Xue, Y., Ai, Q., & Mai, K. (2017). Evaluation of Schizochytrium meal in microdiets of Pacific white shrimp (Litopenaeus vannamei) larvae. Aquaculture Research, 48(5), 2328-2336.
Weyer, K. M., Bush, D. R., Darzins A., & Willson, B.D. (2010). Theoretical maximum algal oil production. Bioenergy Research, 3(2), 204–213.
Wiebe, M. (2002). Myco-protein from Fusarium venenatum: a well-established product for human consumption. Applied microbiology and biotechnology, 58(4), 421-427.