Los CaCCs: proteínas multifuncionales, de la fisiología a la enfermedad

Main Article Content

Juan A. Contreras-Vite José Luis Tellez-Arreola Jerónimo Mondragón Suarez

Resumen

Los CaCCs son proteínas formadoras de poros que se ubican en la membrana celular. Los CaCCs permiten el paso de iones a través de la membrana, lo cual es clave para una adecuada realización de funciones celulares y para el desarrollo de algunas enfermedades. En este contexto, se brinda una reseña del papel fisiopatológico de los CaCCs. La metodología empleada fue hacer una extensa consulta en U.S. National Library of Medicine-PubMed.gov. Los resultados encontrados indican que, a pesar del papel fundamental que tienen los CaCCs en el desarrollo de enfermedades crónicas, en nuestro país se realiza poca investigación y difusión en este campo.

Article Details

Como citar
CONTRERAS-VITE, Juan A.; TELLEZ-ARREOLA, José Luis; MONDRAGÓN SUAREZ, Jerónimo. Los CaCCs: proteínas multifuncionales, de la fisiología a la enfermedad. CIENCIA ergo-sum, [S.l.], v. 26, n. 3, oct. 2019. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/9051>. Fecha de acceso: 22 oct. 2019
Sección
Espacio del divulgador

Citas

Ashcroft, F. (2000). Ion channels and disease: Channelopathies. Nature Cell Biology, 2. Retrieved from http://www.nature.com/ncb/webfocus/disease/books2000.html

Ayoub, C., Wasylyk, C., Li, Y., Thomas, E., Marisa, L., Robé, A. (…) Wasylyk, B. (2010). ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. British Journal of Cancer, 103(5), 715-726. https://doi.org/10.1038/sj.bjc.6605823.

Caputo, A., Caci, E., Ferrera, L., Pedemonte, N., Barsanti, C., Sondo, E. (…) Galietta, L. J. V. (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science, 322(5901), 590-594. https://doi.org/10.1126/science.1163518.

Caterina, M. J., & Julius, D. (2001). The vanilloid receptor: A molecular gateway to the pain pathway. Annual Review of Neuroscience, 24(1), 487-517. https://doi.org/10.1146/annurev.neuro.24.1.487.

Contreras-Vite, J., Cruz-Rangel, S., De Jesus-Pérez, J., Figueroa, J., Rodríguez-Menchaca, A., Pérez-Cornejo, P. (...) Arreola, J. (2016). Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models. Pflugers Archiv: European Journal of Physiology, 1241-1257. https://doi.org/10.1007/s00424-016-1830-9.

Cruz Rangel, S., De Jesús Pérez, J. J., Contreras-Vite, J. A., Pérez Cornejo, P., Hartzell, H., & Arreola, J. (2015). Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B. The Journal of Physiology, 24, 5283-5298. https://doi.org/10.1113/JP271256.

Dixit, R., Kemp, C., Kulich, S., Seethala, R., Chiosea, S., Ling, S. (…) Duvvuri, U. (2015). TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation. Scientific Reports, 5, 16657. https://doi.org/10.1038/srep16657.

Duvvuri, U., Shiwarski, D. J., Xiao, D., Bertrand, C., Huang, X., Edinger, R. S. (…) Gollin, S. M. (2012). TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Research, 72(13), 3270-3281. https://doi.org/10.1158/0008-5472.CAN-12-0475-T

Hille, B. (1978). Ionic channels in excitable membranes. Biophysical Journal, 22, 283-294. https://doi.org/10.1149/1.2100457.

Jia, L., Liu, W., Guan, L., Lu, M., & Wang, K. (2015). Inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. PLOS ONE, 10(8). https://doi.org/10.1371/journal.pone.0136584.

Kashyap, M. K., Marimuthu, A., Kishore, C. J. H., Peri, S., Keerthikumar, S., Prasad, T. S. K. (…) Pandey, A. (2009). Genomewide mRNA profiling of esophageal squamous cell carcinoma for identification of cancer biomarkers. Cancer Biology and Therapy, 8(1), 34-46. https://doi.org/10.4161/cbt.8.1.7090.

Katoh, M., & Katoh, M. (2003). FLJ10261 gene, located within the CCND1-EMS1 locus on human chromosome 11q13, encodes the eight-transmembrane protein homologous to C12orf3, C11orf25 and FLJ34272 gene products. International Journal of Oncology, 22(6), 1375-1381.

Li, Y., Zhang, J., & Hong, S. (2014). ANO1 as a marker of oral squamous cell carcinoma and silencing ANO1 suppresses migration of human SCC-25 cells. Medicina Oral, Patología Oral y Cirugía Bucal, 19(4). https://doi.org/10.4317/medoral.19076.

Liu, S., Zhang, J., Zeng, X., Chen, M., Huang, P., Wu, N., & Wang, F. (2017). TMEM16A regulates portal vein smooth muscle cell proliferation in portal hypertension. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2017.5466.

Liu, W., Lu, M., Liu, B., Huang, Y., & Wang, K. (2012). Inhibition of Ca2+-activated Cl- channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Letters, 326(1), 41-51. https://doi.org/10.1016/j.canlet.2012.07.015.

Ma, M. M., Gao, M., Guo, K. M., Wang, M., Li, X. Y., Zeng, X. L. (…) Guan, Y. Y. (2017). TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension. Hypertension. https://doi.org/10.1161/HYPERTENSIONAHA.116.08874.

Oh, U., & Jung, J. (2016a). Cellular functions of TMEM16/anoctamin. Pflügers Archiv: European Journal of Physiology. https://doi.org/10.1007/s00424-016-1790-0.

Oh, U., & Jung, J. (2016b). Cellular functions of TMEM16/anoctamin. Pflügers Archiv: European Journal of Physiology. https://doi.org/10.1007/s00424-016-1790-0.

Qin, Y., Jiang, Y., Sheikh, A. S., Shen, S., Liu, J., & Jiang, D. (2016). Interleukin-13 stimulates MUC5AC expression via a STAT6-TMEM16A-ERK1/2 pathway in human airway epithelial cells. International Immunopharmacology. https://doi.org/10.1016/j.intimp.2016.08.033.

Qu, Z., Yao, W., Yao, R., Liu, X., Yu, K., & Hartzell, C. (2014). The Ca(2+) -activated Cl(-) channel, ANO1 (TMEM16A), is a double-edged sword in cell proliferation and tumorigenesis. Cancer Medicine, 1, 1-9. https://doi.org/10.1002/cam4.232.

Roskoski Jr., R. (2012). ERK1 / 2 MAP kinases: Structure, function, and regulation. Pharmacological Research. https://doi.org/10.1016/j.phrs.2012.04.005.

Sah, S. P., & McCluggage, W. G. (2013). DOG1 immunoreactivity in uterine leiomyosarcomas. Journal of Clinical Pathology, 66(1), 40-43. https://doi.org/10.1136/jclinpath-2012-201150

Sauter, D. R. P., Novak, I., Pedersen, S. F., Larsen, E. H., & Hoffmann, E. K. (2014). ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflügers Archiv: European Journal of Physiology. https://doi.org/10.1007/s00424-014-1598-8.

Takayama, Y., Uta, D., Furue, H., & Tominaga, M. (2015). Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proceedings of the National Academy of Sciences, 112(16), 5213-5218. https://doi.org/10.1073/pnas.1421507112.

West, R. B., Corless, C. L., Chen, X., Rubin, B. P., Subramanian, S., Montgomery, K. (…) Van de Rijn, M. (2004). The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. The American Journal of Pathology, 165(1), 107-113. https://doi.org/10.1016/S0002-9440(10)63279-8.

Wu, H., Guan, S., Sun, M., Yu, Z., Zhao, L., He, M. (…) Wei, M. (2015). Ano1/TMEM16A Overexpression is associated with good prognosis in PR-Positive or HER2-negative breast cancer patients following tamoxifen treatment. PLOS ONE. https://doi.org/10.1371/journal.pone.0126128.