Bases de datos Latinoamericanas de productos naturales como fuente de compuestos bioactivos

Main Article Content

Alejandro Gómez-García http://orcid.org/0000-0003-4444-8221
José L. Medina-Franco http://orcid.org/0000-0003-4940-1107

Resumen

Los productos naturales son la mayor fuente de moléculas bioactivas. A lo largo del mundo han sido publicadas bases de datos de productos naturales aislados y caracterizados en determinadas regiones geográficas. Una aplicación práctica de estas bases de datos es el diseño de fármacos asistido por computadora (DIFAC). El objetivo de este artículo es mostrar de manera general la significancia de las bases de datos moleculares de productos naturales enfocándose en el DIFAC. A partir de una revisión bibliográfica exhaustiva, se exponen ejemplos de bases de datos moleculares publicadas alrededor del mundo y se muestra el estado del arte actual en el desarrollo de este rubro en Latinoamérica.

Article Details

Como citar
GÓMEZ-GARCÍA, Alejandro; MEDINA-FRANCO, José L.. Bases de datos Latinoamericanas de productos naturales como fuente de compuestos bioactivos. CIENCIA ergo-sum, [S.l.], v. 32, sep. 2024. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/23187>. Fecha de acceso: 25 jun. 2025 doi: https://doi.org/10.30878/ces.v32n0a32.
Sección
Espacio del divulgador

Citas

A. Olmedo, D., & L. Medina-Franco, J. (2019). Chemoinformatic approach: the case of natural products of panama. In Cheminformatics and its applications [working title]. IntechOpen. doi: 10.5772/intechopen.87779
Acevedo, C. H., Scotti, L., & Scotti, M. T. (2018). In Silico Studies Designed to Select Sesquiterpene Lactones with Potential Antichagasic Activity from an In-House Asteraceae Database. Chemmedchem, 13(6), 634–645. doi: 10.1002/cmdc.201700743
Antunes, S. S., Won-Held Rabelo, V., & Romeiro, N. C. (2021). Natural products from Brazilian biodiversity identified as potential inhibitors of PknA and PknB of M. tuberculosis using molecular modeling tools. Computers in Biology and Medicine, 136, 104694. doi: 10.1016/j.compbiomed.2021.104694
Barazorda-Ccahuana, H. L., Ranilla, L. G., Candia-Puma, M. A., Cárcamo-Rodriguez, E. G., Centeno-Lopez, A. E., Davila-Del-Carpio, G., … Chávez-Fumagalli, M. A. (2023). PeruNPDB: the Peruvian Natural Products Database for in silico drug screening. Scientific Reports, 13(1), 7577. doi: 10.1038/s41598-023-34729-0

Barrera-Vázquez, O. S., Gómez-Verjan, J. C., & Magos-Guerrero, G. A. (2021). Chemoinformatic Screening for the Selection of Potential Senolytic Compounds from Natural Products. Biomolecules, 11(3). doi: 10.3390/biom11030467
Beyoğlu, D., & Idle, J. R. (2020). Metabolomic insights into the mode of action of natural products in the treatment of liver disease. Biochemical Pharmacology, 180, 114171. doi: 10.1016/j.bcp.2020.114171
Bordon, K. de C. F., Cologna, C. T., Fornari-Baldo, E. C., Pinheiro-Júnior, E. L., Cerni, F. A., Amorim, F. G., … Arantes, E. C. (2020). From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Frontiers in Pharmacology, 11, 1132. doi: 10.3389/fphar.2020.01132
Chen, C. Y.-C. (2011). TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. Plos One, 6(1), e15939. doi: 10.1371/journal.pone.0015939
Chen, D.-Q., Hu, H.-H., Wang, Y.-N., Feng, Y.-L., Cao, G., & Zhao, Y.-Y. (2018). Natural products for the prevention and treatment of kidney disease. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 50, 50–60. doi: 10.1016/j.phymed.2018.09.182
Costa, R. P. O., Lucena, L. F., Silva, L. M. A., Zocolo, G. J., Herrera-Acevedo, C., Scotti, L., … Scotti, M. T. (2021). The sistematx web portal of natural products: an update. Journal of Chemical Information and Modeling, 61(6), 2516–2522. doi: 10.1021/acs.jcim.1c00083
Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695. doi: 10.1016/j.bbagen.2013.02.008
Dictionary of Natural Products 31.1. (n.d.). Consultado en Marzo 20, 2024, en https://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml

Do Carmo Santos, N., da Paixão, V. G., & da Rocha Pita, S. S. (2019). New Trypanosoma cruzi Trypanothione Reductase Inhibitors Identification using the Virtual Screening in Database of Nucleus Bioassay, Biosynthesis and Ecophysiology (NuBBE). Anti-Infective Agents, 17(2), 138–149. doi: 10.2174/2211352516666180928130031
Ebob, O. T., Babiaka, S. B., & Ntie-Kang, F. (2021). Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2. Natural Products and Bioprospecting, 11(6), 611–628. doi: 10.1007/s13659-021-00317-w
Gabrielson, S. W. (2018). SciFinder. Journal of the Medical Library Association, 106(4). doi: 10.5195/JMLA.2018.515
Gallo, K., Kemmler, E., Goede, A., Becker, F., Dunkel, M., Preissner, R., & Banerjee, P. (2023). SuperNatural 3.0-a database of natural products and natural product-based derivatives. Nucleic Acids Research, 51(D1), D654–D659. doi: 10.1093/nar/gkac1008
Gasteiger, J., & Funatsu, K. (2006). Chemoinformatics – an important scientific discipline. Journal of Computer Chemistry, Japan, 5(2), 53–58. doi: 10.2477/jccj.5.53
Gómez-García, A., Jiménez, D. A. A., Zamora, W. J., Barazorda-Ccahuana, H. L., Chávez-Fumagalli, M. Á., Valli, M., … Medina-Franco, J. L. (2023). Navigating the chemical space and chemical multiverse of a unified latin american natural product database: lanapdb. Pharmaceuticals, 16(10), 1388. doi: 10.3390/ph16101388
Gómez-García, A., Prinz, A.-K., Acuña Jiménez, D. A., Zamora, W. J., Barazorda-Ccahuana, H. L., Chávez-Fumagalli, M. Á., … Medina-Franco, J. L. (2024). Profiling the natural product-likeness of Latin American compound libraries. doi: 10.26434/chemrxiv-2024-t2bk9
Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H.-Z., & Xu, X. (2013). Use of natural products as chemical library for drug discovery and network pharmacology. Plos One, 8(4), e62839. doi: 10.1371/journal.pone.0062839
Heard, S. C., Wu, G., & Winter, J. M. (2021). Antifungal natural products. Current Opinion in Biotechnology, 69, 232–241. doi: 10.1016/j.copbio.2021.02.001
Herrera-Acevedo, C., Dos Santos Maia, M., Cavalcanti, É. B. V. S., Coy-Barrera, E., Scotti, L., & Scotti, M. T. (2021). Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach. Molecular Diversity, 25(4), 2411–2427. doi: 10.1007/s11030-020-10139-6
Herrera-Acevedo, C., Perdomo-Madrigal, C., Herrera-Acevedo, K., Coy-Barrera, E., Scotti, L., & Scotti, M. T. (2021). Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database. Molecular Diversity, 25(3), 1553–1568. doi: 10.1007/s11030-021-10245-z
Ionov, N., Druzhilovskiy, D., Filimonov, D., & Poroikov, V. (2023). Phyto4Health: Database of Phytocomponents from Russian Pharmacopoeia Plants. Journal of Chemical Information and Modeling, 63(7), 1847–1851. doi: 10.1021/acs.jcim.2c01567
ISDB. A database of In-Silico predicted MS/MS spectrum of Natural Products. (n.d.). Consultado en Marzo 20, 2024, en http://oolonek.github.io/ISDB/
Kar, S., & Roy, K. (2013). How far can virtual screening take us in drug discovery? Expert Opinion on Drug Discovery, 8(3), 245–261. doi: 10.1517/17460441.2013.761204
Llurba-Montesino, N., & Schmidt, T. J. (2018). Salvia Species as Sources of Natural Products with Antiprotozoal Activity. International Journal of Molecular Sciences, 19(1). doi: 10.3390/ijms19010264
Maitra, U., Stephen, C., & Ciesla, L. M. (2022). Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases. Journal of Pharmaceutical and Biomedical Analysis, 210, 114553. doi: 10.1016/j.jpba.2021.114553
Martinez-Mayorga, K., Madariaga-Mazon, A., Medina-Franco, J. L., & Maggiora, G. (2020). The impact of chemoinformatics on drug discovery in the pharmaceutical industry. Expert Opinion on Drug Discovery, 15(3), 293–306. doi: 10.1080/17460441.2020.1696307
Martinez-Mayorga, K., Marmolejo-Valencia, A. F., Cortes-Guzman, F., García-Ramos, J. C., Sánchez-Flores, E. I., Barroso-Flores, J., … Esquivel-Rodriguez, B. (2017). Toxicity Assessment of Structurally Relevant Natural Products from Mexican Plants with Antinociceptive Activity. Journal of the Mexican Chemical Society, 61(3). doi: 10.29356/jmcs.v61i3.344
Masic, I., & Ferhatovica, A. (2012). Review of most important biomedical databases for searching of biomedical scientific literature. Donald School Journal of Ultrasound in Obstetrics and Gynecology, 6(4), 343–361. doi: 10.5005/jp-journals-10009-1258
Menezes, R. P. B. de, Viana, J. de O., Muratov, E., Scotti, L., & Scotti, M. T. (2022). Computer-Assisted Discovery of Alkaloids with Schistosomicidal Activity. Current Issues in Molecular Biology, 44(1), 383–408. doi: 10.3390/cimb44010028
Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Scientific Reports, 8(1), 4329. doi: 10.1038/s41598-018-22631-z
Mohan, S., Ajay Krishna, M. S., Chandramouli, M., Keri, R. S., Patil, S. A., Ningaiah, S., & Somappa, S. B. (2022). Antibacterial natural products from microbial and fungal sources: a decade of advances. Molecular Diversity. doi: 10.1007/s11030-022-10417-5
Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. doi: 10.1021/acs.jnatprod.9b01285
Ntie-Kang, F., Zofou, D., Babiaka, S. B., Meudom, R., Scharfe, M., Lifongo, L. L., … Efange, S. M. N. (2013). AfroDb: a select highly potent and diverse natural product library from African medicinal plants. Plos One, 8(10), e78085. doi: 10.1371/journal.pone.0078085
Pilón-Jiménez, B. A., Saldívar-González, F. I., Díaz-Eufracio, B. I., & Medina-Franco, J. L. (2019). BIOFACQUIM: A mexican compound database of natural products. Biomolecules, 9(1). doi: 10.3390/biom9010031
Pilon, A. C., Valli, M., Dametto, A. C., Pinto, M. E. F., Freire, R. T., Castro-Gamboa, I., … Bolzani, V. S. (2017). NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Scientific Reports, 7(1), 7215. doi: 10.1038/s41598-017-07451-x
Przybyłek, M. (2020). Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening. Molecules, 25(24). doi: 10.3390/molecules25245942
Raven, P. H., Gereau, R. E., Phillipson, P. B., Chatelain, C., Jenkins, C. N., & Ulloa Ulloa, C. (2020). The distribution of biodiversity richness in the tropics. Science Advances, 6(37). doi: 10.1126/sciadv.abc6228
Reich, M., & Labes, A. (2017). How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Marine Genomics, 36, 57–75. doi: 10.1016/j.margen.2017.09.007
Rodrigues, G. C. S., Dos Santos Maia, M., de Menezes, R. P. B., Cavalcanti, A. B. S., de Sousa, N. F., de Moura, É. P., … Scotti, M. T. (2020). Ligand and Structure-based Virtual Screening of Lamiaceae Diterpenes with Potential Activity against a Novel Coronavirus (2019-nCoV). Current Topics in Medicinal Chemistry, 20(24), 2126–2145. doi: 10.2174/1568026620666200716114546
Sabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E. M., Govender, T., Naicker, T., & Kruger, H. G. (2021). Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry, 224, 113705. doi: 10.1016/j.ejmech.2021.113705
Saldívar-González, F. I., & Medina-Franco, J. L. (2020). Chemoinformatics approaches to assess chemical diversity and complexity of small molecules. In Small molecule drug discovery (pp. 83–102). Elsevier. doi: 10.1016/B978-0-12-818349-6.00003-0
Siddiqui, A. J., Jahan, S., Singh, R., Saxena, J., Ashraf, S. A., Khan, A., … Adnan, M. (2022). Plants in anticancer drug discovery: from molecular mechanism to chemoprevention. BioMed Research International, 2022, 5425485. doi: 10.1155/2022/5425485
Sorokina, M., Merseburger, P., Rajan, K., Yirik, M. A., & Steinbeck, C. (2021). COCONUT online: Collection of Open Natural Products database. Journal of Cheminformatics, 13(1), 2. doi: 10.1186/s13321-020-00478-9
Sorokina, M., & Steinbeck, C. (2020). Review on natural products databases: where to find data in 2020. Journal of Cheminformatics, 12(1), 20. doi: 10.1186/s13321-020-00424-9
Tiwari, P., & Bae, H. (2022). Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms, 10(2). doi: 10.3390/microorganisms10020360
UEFS Natural Products. (n.d.). Consultado en Marzo 20, 2024, en http://zinc12.docking.org/catalogs/uefsnp
UNIIQUIM. (n.d.). Consultado en Marzo 20, 2024, en https://uniiquim.iquimica.unam.mx/
Vougogiannopoulou, K., Corona, A., Tramontano, E., Alexis, M. N., & Skaltsounis, A.-L. (2021). Natural and Nature-Derived Products Targeting Human Coronaviruses. Molecules, 26(2). doi: 10.3390/molecules26020448
Wainwright, C. L., Teixeira, M. M., Adelson, D. L., Buenz, E. J., David, B., Glaser, K. B., … Wolfender, J.-L. (2022). Future directions for the discovery of natural product-derived immunomodulating drugs: an IUPHAR positional review. Pharmacological Research, 177, 106076. doi: 10.1016/j.phrs.2022.106076
Yang, J., Wang, D., Jia, C., Wang, M., Hao, G., & Yang, G. (2019). Freely accessible chemical database resources of compounds for in silico drug discovery. Current Medicinal Chemistry, 26(42), 7581–7597. doi: 10.2174/0929867325666180508100436
Yi, M., Lin, S., Zhang, B., Jin, H., & Ding, L. (2020). Antiviral potential of natural products from marine microbes. European Journal of Medicinal Chemistry, 207, 112790. doi: 10.1016/j.ejmech.2020.112790
Zani, C. L., & Carroll, A. R. (2017). Database for Rapid Dereplication of Known Natural Products Using Data from MS and Fast NMR Experiments. Journal of Natural Products, 80(6), 1758–1766. doi: 10.1021/acs.jnatprod.6b01093
Zhang, L., Song, J., Kong, L., Yuan, T., Li, W., Zhang, W., … Du, G. (2020). The strategies and techniques of drug discovery from natural products. Pharmacology & Therapeutics, 216, 107686. doi: 10.1016/j.pharmthera.2020.107686
CC BY-NC-ND