Condiciones físicas y químicas del arroyo Quilamula, Morelos, México

Main Article Content

Judith García-Rodríguez http://orcid.org/0000-0003-3789-1938
Hugo F. Olivares-Rubio http://orcid.org/0000-0002-7082-4588
Migdalia Díaz-Vargas http://orcid.org/0000-0002-0510-8358
Elsah Arce http://orcid.org/0000-0002-9815-2525
Marco Franco http://orcid.org/0000-0003-4954-5100

Resumen

 


Se analizaron las características físicas y químicas del agua en el arroyo Quilamula, localidad Cruz Pintada, municipio de Tlaquiltenango (Morelos, México) a partir de un estudio en tres estaciones de muestreo en el arroyo Quilamula mediante técnicas colorimétricas y de espectrofotometría. De acuerdo con los resultados, el arroyo posee aguas de templadas a cálidas, con pH medianamente básicos, con baja concentración de oxígeno disuelto y de sólidos disueltos totales, baja conductividad, de moderadamente duras a duras, con niveles bajos de cloruros y de condición hipertrófica debido a elevadas concentraciones de nitratos y fósforo total. Entre las conclusiones se encuentra que el arroyo Quilamula posee características propias de sistemas tropicales con niveles altos de nutrientes dadas las actividades agrícolas y pecuarias de la zona.

Article Details

Como citar
GARCÍA-RODRÍGUEZ, Judith et al. Condiciones físicas y químicas del arroyo Quilamula, Morelos, México. CIENCIA ergo-sum, [S.l.], v. 32, mar. 2025. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/21714>. Fecha de acceso: 25 jun. 2025 doi: https://doi.org/10.30878/ces.v32n0a26.
Sección
Ciencias biológicas del mar y limnología

Citas

Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., McGregor, G., Sabater, S., Tockner, K., & Palmer, M. A. (2014). Why should we care about temporary waterways? Science, 343, 1080-1081. https://doi.org/10.1126/science.1246666

Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. BioScience, 43(1), 32-43. https://doi.org/10.2307/1312104

APHA (American Public Health Association). (1992). Standard Methods for the Examination of Water and Wastewater. American Water Works Association.

Arle, J., & Wagner, F. (2013). Effects of anthropogenic salinisation on the ecological status of macroinvertebrate assemblages in the Werra River (Thuringia, Germany). Hydrobiologia, 701(1), 129-148. https://doi.org/10.1007/s10750-012-1265-z

Barats, A., Renac, C., Orani, A. M., Durrieu, G., Saint Martin, H., Esteller, M. V., & Hoyos, S. E. G. (2020). Tracing source and mobility of arsenic and trace elements in a hydrosystem impacted by past mining activities (Morelos state, Mexico). Science of the Total Environment, 712, 135565. https://doi.org/10.1016/j.scitotenv.2019.135565

Bojorge-García, M., Carmona, J., Beltrán, Y., & Cartajena, M. (2010). Temporal and spatial distribution of macroalgal communities of mountain streams in Valle de Bravo Basin, central Mexico. Hydrobiologia, 641, 159-169. https://doi.org/10.1007/s10750-009-0074-5

Boyd, C. E., Tucker, C. S., & Somridhivej, B. (2016). Alkalinity and hardness: critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 47(1), 6-41. https://doi.org/10.1111/jwas.12241

Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater biology, 51(8), 1389-1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x

Carmona, J., Bojorge-García, M., Beltrán, Y., & Ramírez-Rodríguez, R. (2009). Phenology of Sirodotia suecica (Batrachospermaceae, Rhodophyta) in a high-altitude stream in central Mexico. Phycological Research, 57(2), 118-126. https://doi.org/10.1111/j.1440-1835.2009.00528.x

Caro-Borrero, A., Carmona-Jiménez, J., & Figueroa, F. (2020). Water resources conservation and rural livelihoods in protected areas of central Mexico. Journal of Rural Studies, 78, 12-24. https://doi.org/10.1016/j.jrurstud.2020.05.008

Castellazzi, P., Martel, R., Rivera, A., Huang, J., Pavlic, G., Calderhead, A. I., Chaussard, E., Garfias J., & Salas, J. (2016). Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resources Research, 52(8), 5985-6003. https://doi.org/10.1002/2015WR018211

Chapman, P. M., Bailey, H., & Canaria, E. (2000). Toxicity of total dissolved solids associated with two mine effluents to chironomid larvae and early life stages of rainbow trout. Environmental Toxicology and Chemistry: An International Journal, 19(1), 210-214. https://doi.org/10.1002/etc.5620190125

CONANP (Comisión Nacional de Áreas Naturales Protegidas). (2005). Programa de Conservación y Manejo Reserva de la Biosfera Sierra de Huautla, México.

Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27(2), 261-266. https://doi.org/10.2134/jeq1998.00472425002700020004x

Cosgrove, W. J., & Loucks, D. P. (2015). Water management: Current and future challenges and research directions. Water Resources Research, 51(6), 4823-4839. https://doi.org/10.1002/2014WR016869

Daniel, T. C., Sharpley, A. N., & Lemunyon, J. L. (1998). Agricultural phosphorus and eutrophication: A symposium overview. Journal of Environmental Quality, 27(2), 251-257. https://doi.org/10.2134/jeq1998.00472425002700020002x

Datry, T., Boulton, A. J., Bonada, N., Fritz, K., Leigh, C., Sauquet, E., Tockner, K., Hugueny, B., & Dahm, C. N. (2017). Flow intermittence and ecosystem services in rivers of the Anthropocene. Journal of Applied Ecology, 2017, 1-12. https://doi.org/10.1111/1365-2664.12941

Davis, J. C. (1975). Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. Journal of the Fisheries Board of Canada, 32(12), 2295-2332. https://doi.org/10.1139/f75-268

Dokulil, M. T., & Teubner, K. (2011). Eutrophication and Climate Change: Present Situation and Future Scenarios. In A. Ansari, S. Singh Gill, , G. Lanza, W. Rast (Eds.), Eutrophication: causes, consequences and control. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-9625-8_1

Domínguez-Domínguez, O., Martínez-Meyer, E., Zambrano, L., & Pérez-Ponce, G. (2006). Using ecological niche modeling as a conservation tool for freshwater species: live bearing fishes in central Mexico. Conservation Biology, 20(6), 1730-1739. https://doi.org/10.1111/j.1523-1739.2006.00588.x

EPA (Environmental Protection Agency). (2023). pH. https://www.epa.gov/caddis-vol2/ph

Ghavidel, S., & Montaseri, M. (2014). Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin. Stochastic Environmental Research and Risk Assessment, 28, 2101-2118. https://doi.org/10.1007/s00477-014-0899-y

Gholami, S., & Srikantaswamy, S. (2009). Analysis of agricultural impact on the Cauvery river water around KRS dam. World Applied Sciences Journal, 6(8), 1157-1169.

Gómez, R., Arce, M. I., Baldwin, D. S., & Dahm, C. N. (2017). Water physicochemistry in intermittent rivers and ephemeral streams. In T. Datry, N. Bonada & A. Boulton (Eds.), Intermittent rivers and ephemeral streams. Ecology and Management. Academic Press. https://doi.org/10.1016/B978-0-12-803835-2.00005-X

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35(5), 365-377. https://doi.org/10.1016/j.foodpol.2010.05.006

Herrera-Pantoja, M., & Hiscock, K. M. (2015). Projected impacts of climate change on water availability indicators in a semi-arid region of central Mexico. Environmental Science & Policy, 54, 81-89. https://doi.org/10.1016/j.envsci.2015.06.020

Hong, Y., Zhu, Z., Liao, W., Yan, Z., Feng, C., & Xu, D. (2023). Freshwater water-quality criteria for chloride and guidance for the revision of the water-quality standard in China. International Journal of Environmental Research and Public Health, 20(4), 2875. https://doi.org/10.1016/10.3390/ijerph20042875

Ice, G., & Sugden, B. (2003). Summer dissolved oxygen concentrations in forested streams of northern Louisiana. Southern Journal of Applied Forestry, 27(2), 92-99. https://doi.org/10.1093/sjaf/27.2.92

INEGI (Instituto Nacional de Estadística y Geografía). (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Tlaquiltenango, Morelos. Clave geoestadística 17025.

Kiser, A. H., Cummings, K. S., Tiemann, J. S., Smith, C. H., Johnson, N. A., Lopez, R. R., & Randklev, C. R. (2022). Using a multi-model ensemble approach to determine biodiversity hotspots with limited occurrence data in understudied areas: An example using freshwater mussels in México. Ecology and Evolution, 12(5), e8909. https://doi.org/10.1002/ece3.8909

Koundouri, P., Boulton, A. J., Datry, T., & Souliotis, I. (2017). Ecosystem services, values, and societal perceptions of intermittent rivers and ephemeral streams. In T. Datry, N. Bonada & A. Boulton (Eds.), Intermittent rivers and ephemeral streams. Ecology and Management. Academic Press. https://doi.org/10.1016/B978-0-12-803835-2.00018-8

Kumar, P., Lai, S. H., Wong, J. K., Mohd, N. S., Kamal, M. R., Afan, H. A., Ahmed A. N, Sherif M., Sefelnasr A., & El-Shafie, A. (2020). Review of nitrogen compounds prediction in water bodies using artificial neural networks and other models. Sustainability, 12(11), 4359. https://doi.org/10.3390/su12114359

Long, W. C., Brylawski, B. J., & Seitz, R. D. (2008). Behavioral effects of low dissolved oxygen on the bivalve Macoma balthica. Journal of Experimental Marine Biology and Ecology, 359(1), 34-39. https://doi.org/10.1016/j.jembe.2008.02.013

López-López, E., Sedeño-Díaz, J. E., Mendoza-Martínez, E., Gómez-Ruiz, A., Martínez & Ramírez, E. (2019). Water quality and macroinvertebrate community in dryland streams: The case of the Tehuacán-Cuicatlán Biosphere Reserve (México) facing climate change. Water, 11(7), 1376. https://doi.org/10.3390/w11071376

Lyons, J., Navarro-Pérez, S., Cochran, P. A., Santana, E. C., & Guzmán-Arroyo, M. (1995). Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central Mexico. Conservation Biology, 9(3), 569-584. https://doi.org/0.1046/j.1523-1739.1995.09030569.x

Mattson, V. R., Hockett, J. R., Highland, T. L., Ankley, G. T., & Mount, D. R. (2008). Effects of low dissolved oxygen on organisms used in freshwater sediment toxicity tests. Chemosphere, 70(10), 1840-1844. https://doi.org/10.1016/j.chemosphere.2007.08.006

Merriam, E. R., Strager, M. P., & Petty, J. T. (2022). Source water vulnerability to elevated total dissolved solids within a mixed-use Appalachian River basin. PLOS Water, 1(8), e0000035. https://doi.org/10.1371/journal.pwat.0000035

Meybeck, M. (1982). Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282(4), 401-450. https://doi.org/10.2475/ajs.282.4.401

Meybeck, M. (2003). Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society of London. Biological Sciences, 358(1440), 1935-1955. https://doi.org/10.1098/rstb.2003.1379

Nandini, S., Ramírez-García, P., Sarma, S. S. S., & Gutierrez-Ochoa, R. A. (2019). Planktonic indicators of water quality: a case study in the Amacuzac River basin (State of Morelos, Mexico). River Research and Applications, 35(3), 268-279. https://doi.org/10.1002/rra.3401

Oliva-Martínez, M. G., Ramírez-Martínez, J. G., Garduño-Solórzano, G., Cañetas-Ortega, J., & Ortega, M. M. (2005). Caracterización diatomológica en tres cuerpos de agua de los humedales de Jilotepec-Ixtlahuaca, Estado de México. Hidrobiológica, 15(1), 1-26. https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1043

Pringle, C. M., Freeman, M. C., & Freeman, B. J. (2000). Regional effects of hydrologic alterations on riverine macrobiota in the new world: tropical-temperate comparisons: The massive scope of large dams and other hydrologic modifications in the temperate New World has resulted in distinct regional trends of biotic impoverishment. BioScience, 50(9), 807-823. https://doi.org/10.1641/0006-3568(2000)050[0807:REOHAO]2.0.CO;2

Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45(1-12), 17-23. https://doi.org/10.1016/S0025-326X(02)00227-8

Rico-Sánchez, A. E., Rodríguez-Romero, A. J., Sedeño-Díaz, J. E., López-López, E., & Sundermann, A. (2022). Aquatic macroinvertebrate assemblages in rivers influenced by mining activities. Scientific Reports, 12(1), 3209. https://doi.org/10.1038/s41598-022-06869-2

Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303-304. https://doi.org/10.1038/nbt0308-303

Stubbington, R., England, J., Wood, P. J., & Sefton, C. E. M. (2017). Temporary streams in temperate zones: Recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems. WIREs Water, 4(4). https://doi.org/10.1002/wat2.1223

Sun, H., Li, J., Tang, L., & Yang, Z. (2012). Responses of crucian carp Carassius auratus to long-term exposure to nitrite and low dissolved oxygen levels. Biochemical Systematics and Ecology, 44, 224-232. https://doi.org/10.1016/j.bse.2012.06.011

Thornton, P., & Herrero, M. (2010). The inter-linkages between rapid growth in livestock production, climate change, and the impacts on water resources, land use, and deforestation. World Bank Policy Research Working Paper, 5178. https://doi.org/10.1596/1813-9450-5178

Vagheei, H., Laini, A., Vezza, P., Palau-Salvador, G., & Boano, F. (2022). Ecohydrologic modeling using nitrate, ammonium, phosphorus, and macroinvertebrates as aquatic ecosystem health indicators of Albaida Valley (Spain). Journal of Hydrology: Regional Studies, 42, 101155. https://doi.org/10.1016/j.ejrh.2022.101155

Van der Aa, M. (2003). Classification of mineral water types and comparison with drinking water standards. Environmental Geology, 44(5), 554-563. https://doi.org/10.1007/s00254-003-0791-4

Vargas-Solano, S. V., Rodríguez-González, F., Arenas-Ocampo, M. L., Martínez-Velarde, R., Sujitha, S. B., & Jonathan, M. P. (2019). Heavy metals in the volcanic and peri-urban terrain watershed of the River Yautepec, Mexico. Environmental Monitoring and Assessment, 191, 1-15. https://doi.org/10.1007/s10661-019-7300-z

Vargas-Solano, S. V., Rodríguez-González, F., Martínez-Velarde, R., Morales-García, S. S., & Jonathan, M. P. (2022). Removal of heavy metals present in water from the Yautepec River Morelos México, using Opuntia ficus-indica mucilage. Environmental Advances, 7. https://doi.org/10.1016/j.envadv.2021.100160

Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems (third edition). San Diego: Academic Press.

Wetzel, R. G., & Likens, G. E. (2000). The inorganic carbon complex: alkalinity, acidity, CO2, pH, total inorganic carbon, hardness, aluminum. In R. G. Wetzel & G. E. Likens (Eds.), Limnological Analyses. New York: Springer. https://doi.org/10.1016/10.1007/978-1-4757-3250-4_8