Photosynthesis response in elicited tomato (Solanum lycopersicum) plants to identify eustress or distress: first approach Respuesta en la fotosíntesis de jitomate (Solanum lycopersicum) elicitado para distinguir eustrés-distrés: primer acercamiento
Main Article Content
Resumen
La elicitación en plantas induce producción de metabolitos secundarios. Dependiendo de la dosis, las plantas manifiestan eustrés o distrés. Al respecto, se presenta una primera aproximación para estudiar el efecto de la elicitación sobre la fotosíntesis en plantas de jitomate y usarla como indicador de estrés. Ácido salicílico y peróxido de hidrógeno se aplicaron en tres dosis, vías foliar y radicular. La fotosíntesis se midió mediante una cámara hermética colocando una planta de jitomate a la vez y midiendo el consumo de CO2 en el tiempo. El consumo de CO2 presentó una tendencia lineal y los cambios de pendiente indicaron baja o alta actividad fotosintética. La fotosíntesis podría usarse como indicador del estrés en plantas en la agricultura de precisión.
Article Details

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Citas
Ahmed, H. A., Tong, Y., Li, L., Sahari, S. Q., Almogahed, A. M., & Cheng, R. (2022). Integrative effects of CO2 concentration, illumination intensity and air speed on the growth, gas exchange and light use efficiency of lettuce plants grown under artificial lighting. Horticulturae, 8, 270. https://doi.org/10.3390/horticulturae8030270
Ali, B. (2021). Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. https://doi.org/10.1016/j.bcab.2020.101884
Arellano-Beltrán, J., Rico-García, E., & Hernández-Pérez, C. I. (2017). A new simple canopy photosynthesis measurement system. 2017 XIII International Engineering Congress (CONIIN) (pp. 1-5). Santiago de Querétaro. https://doi.org/10.1109/CONIIN.2017.7968182
Calabrese, E. J. (2008). What Is Hormesis? In E. Le Bourg, S. I. S Rattan (Eds.), Mild Stress and Healthy Aging (pp. 5-19). Springer: Dordrecht Netherlands.
Calzadilla, P. I., Carvalho, F. E. L., Gomez, R., Lima Neto, M. C., & Signorelli, S. (2022). Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops. Environmental and Experimental Botany, 201, 104950. https://doi.org/10.1016/j.envexpbot.2022.104950
Choudhury, B. (1986). An analysis of observed linear correlations between net photosynthesis and a canopy-temperature-based plant water stress index. Agricultural and Forest Meteorology, 36, 323-333. https://doi.org/10.1016/0168-1923(86)90011-0
Flood, P. J. (2019). Using natural variation to understand the evolutionary pressures on plant photosynthesis. Current Opinion on Plant Biology, 49, 68-73. https://doi.org/10.1016/j.pbi.2019.06.001
García-Rodríguez, L. d. C., Prado-Olivarez, J., Guzmán-Cruz, R., Heil, M., Guevara-González, R. G., Diaz-Carmona, J., López-Tapia, H., Padierna-Arvizu, D. d. J., & Espinosa-Calderón, A. (2022). Black-Box mathematical model for net photosynthesis estimation and its digital iot implementation based on non-invasive techniques: Capsicum annuum L. Study Case. Sensors, 22(14), 5275. https://doi.org/10.3390/ s22145275
Guru, A., Dwivedi, P., Kaur, P., & Pandey, D. K. (2022). Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. South African Journal of Botany, 149, 1029-1043. https://doi.org/10.1016/j.sajb.2021.10.014
Hashim, M., Ahmad, B., Drouet, S., Hano, C., Abbasi, B.H., & Anjum, S. (2021). Comparative effects of different light sources on the production of key secondary metabolites in plants in vitro cultures. Plants, 10, 1-18. https://doi.org/10.3390/plants10081521
Hassini, I., Rios, J. J., Garcia-Ibañez, P., Baenas N., Carvajal, M., & Moreno, D. A. (2019). Comparative effect of elicitors on the physiology and secondary metabolites in broccoli plants. Journal of Plant Physiology, 239, 1-9. https://doi.org/10.1016/j.jplph.2019.05.008
Jalal, A., De Oliveira Junior, J. C., Santos Ribeiro, J., Fernandes, G. C., Guerra Mariano, G., Dias Rezende Trindade, V., & Rodrigues dos Reis, A. (2021). Hormesis in plants: Physiological and biochemical responses. Ecotoxicology and Environmental Safety, 207, 1-12. https://doi.org/10.1016/j.ecoenv.2020.111225
Kantayos, V., Jin-Suk, K., & So-Hyeon, B. (2021). Enhancing resveratrol bioproduction and anti-melanogenic activities through elicitation in DJ526 Cell suspension. Plants, 10, 1063. https://doi.org/10.3390/plants10081653
Li, M., Zhang, Z., Guo, P., Ji, G., Zhang, X., Qi, Q., Xu, X., Zhang, X., Li, W., Han, Z., & Qiu, C. (2022). Whole-canopy photosynthetic characterization of apple tree and the effects induced by grafting on rootstocks with different vigor. Horticulturae, 8, 816. https://doi.org/10.3390/horticulturae8090816
Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255. https://doi.org/10.1016/j.jarmap.2020.100255
Mhamdi, A. (2023). Hydrogen peroxide in plants. In Advances in Botanical Research (Ed.), Mittler R. Van Breusegem F. (pp. 43-75). Academic Press. https://doi.org/10.1016/bs.abr.2022.11.002
Ming-yang, M., Yang, L., Yao-wen, Z., Wei-long, Q., Zhi-min, W., Ying-hua, Z., Cong-ming, L., & Qing-Tao, L. (2021). In situ measurements of winter wheat diurnal changes in photosynthesis and environmental factors reveal new insight into photosynthesis improvement by super-high-yield cultivation. Journal of Integrative Agriculture, 20(2), 527-539. https://doi.org/10.1016/S2095-3119(20)63554-7
Rico-García, E., Hernandez-Hernandez, F., Soto-Zarazua, G. M., & Herrera-Ruiz, G. (2009). Two new methods for the estimation of leaf area using digital photography. International Journal of Agriculture and Biology, 11(4), 397-400. https://www.researchgate.net/publication/255653066_Two_new_Methods_for_the_Estimation_of_Leaf_Area_using_Digital_Photography
Roig-Oliver, M., Fullana-Pericàs, M., Bota, J., & Flexas, J. (2021). Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in Hordeum vulgare and Triticum aestivum subjected to water deficit stress. Plant Science, 311, 111015. https://doi.org/10.1016/j.plantsci.2021.111015
Ru, C., Hu, X., Chen, D., Wang, W., & Song, T. (2022). Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis, root morphology, and antioxidant defense in maize seedlings. Environmental and Experimental Botany, 202. 105010. https://doi.org/10.1016/j.envexpbot.2022.105010
Singh, S. (2023). Salicylic acid elicitation improves antioxidant activity of spinach leaves by increasing phenolic content and enzyme levels. Food Chemistry Advances, 2, 100156. https://doi.org/10.1016/j.focha.2022.100156
Song, Q., Xiao, H., Xiao, X., & Zhu, X. (2016). A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agricultural and Forest Meteorology, 217, 101-107. https://doi.org/10.1016/j.agrformet.2015.11.020
Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinuaer Associates, Inc.
Vargas-Hernández, M., Macias-Bobadilla, I., Guevara-Gonzalez, R. G., Romero-Gomez, S., Rico-Garcia, E., Ocampo-Velazquez, R. V., Alvarez-Arquieta, L. L., & Torres-Pacheco, I. (2017). Plant Hormesis management with biostimulants of biotic origin in agriculture. Frontiers in Plant Science, 8, 1-11. https://doi.org/10.3389/fpls.2017.01762
Vazquez-Hernandez, C., Feregrino-Perez, A. A., Perez-Ramirez, I., Ocampo-Velazquez, R.V., Rico-García, E., Torres-Pacheco, I., & Guevara-Gonzalez, R.G. (2019). Controlled elicitation increases steviol glycosides (SGs) content and gene expression-associated to biosynthesis of SGs in Stevia rebaudiana B. cv. Morita II. Industrial Crops and Products, 139, 1-7. https://doi.org/10.1016/j.indcrop.2019.111479
Zahra, N., Hafeez, M. B., Ghaffar, A., Kausar, A., Zeidi, M. A., Siddique, K. H. M., & Farooq, M. (2023). Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany, 206. 105178. https://doi.org/10.1016/j.envexpbot.2022.105178
Zeroual, A., Baidani, A., & Idrissi, O. (2023). Drought Stress in Lentil (Lens culinaris, Medik) and approaches for its management. Horticulturae, 9(1). https://doi.org/10.3390/horticulturae9010001
Zheng, F., Chen, L., Zhang, P., Zhou, J., Lu X., & Tian, W. (2020). Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review. Carbohydrate Polymers, 230, 115637. https://doi.org/10.1016/j.carbpol.2019.115637