Mientras más, mejor: análisis de interacciones proteicas mediante fluorescencia
Main Article Content
Resumen
En las últimas décadas, se han desarrollado nuevas estrategias que permiten el análisis de interacciones proteicas sin alterar la estructura celular. El objetivo de esta revisión es mostrar un panorama general para el estudio de las interacciones proteína-proteína. Se comparan diferentes técnicas fluorescentes tanto de complementación como de transferencia de energía y su combinación. Se presentan ventajas, desventajas y aplicaciones novedosas en cultivo celular y en organismos vivos con un enfoque en el uso de fluorescencia, luminiscencia y su combinación para la detección de interacciones multiproteicas. La implementación de estrategias con marcaje fluorescente y luminiscente, así como sus ingeniosas combinaciones, han desplazado las técnicas clásicas y permiten la detección más eficiente de complejos multiproteicos.
Article Details
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Citas
Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J., & Karin, M. (1997). Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Molecular and Cellular Biology, 17(6), 3094-3102. https://doi.org/10.1128/MCB.17.6.3094
Bischof, J., Duffraisse, M., Furger, E., Ajuria, L., Giraud, G., Vanderperre, S.,... & Merabet, S. (2018). Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila. eLife, 7. https://doi.org/10.7554/eLife.38853
Boora, N., Verma, V., Khurana, R., Gawande, G., Bhimrajka, S., Chaprana, K.,... & Kapoor, S. (2021). Determination of Tripartite Interaction between Two Monomers of a MADS-box Transcription Factor and a Calcium Sensor Protein by BiFC-FRET-FLIM Assay. Journal of Visualized Experiments, 178. https://doi.org/10.3791/62791
Broder, Y. C., Katz, S., & Aronheim, A. (1998). The ras recruitment system, a novel approach to the study of protein-protein interactions. Current Biology, 8(20), 1121-1130. https://doi.org/10.1016/S0960-9822(98)70467-1
Broome, A. M., Bhavsar, N., Ramamurthy, G., Newton, G., & Basilion, J. P. (2010). Expanding the utility of β-galactosidase complementation: piece by piece. Molecular Pharmaceutics, 7(1), 60-74. https://doi.org/10.1021/mp900188e
Ciruela, F. (2008). Fluorescence-based methods in the study of protein-protein interactions in living cells. Current Opinion in Biotechnology, 19(4), 338-343. https://doi.org/10.1016/j.copbio.2008.06.003
Cevheroglu, O., Murat, M., Mingu-Akmete, S., & Son, C. D. (2021). Ste2p Under the Microscope: the Investigation of Oligomeric States of a Yeast G Protein-Coupled Receptor. The Journal of Physical Chemistry B, 125(33), 9526-9536. https://doi.org/10.1021/acs.jpcb.1c05872
Chen, M., Li, W., Zhang, Z. P., Pan, J., Sun, Y., Zhang, X.,... & Cui, Z. (2018). Three-fragment fluorescence complementation for imaging of ternary complexes under physiological conditions. Analytical Chemistry, 90(22), 13299-13305. https://doi.org/10.1021/acs.analchem.8b02661
Dai, J.-P., Li, W.-Z., Zhao, X.-F., Wang, G.-F., Yang, J.-C., Zhang, L., Chen, X.-X., Xu, Y.-X., & Li, K.-S. (2012). A Drug Screening Method Based on the Autophagy Pathway and Studies of the Mechanism of Evodiamine against Influenza A Virus. PLOS ONE, 7(8). https://doi.org/10.1371/journal.pone.0042706
Ding, H., & Johnson, G. V. (2008). New application of β-galactosidase complementation to monitor tau self-association. Journal of Neurochemistry, 106(4), 1545-1551. https://doi.org/10.1111/j.1471-4159.2008.05496.x
Galarneau, A., Primeau, M., Trudeau, L. E., & Michnick, S. W. (2002). β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein-protein interactions. Nature Biotechnology, 20, 619-622. https://doi.org/10.1038/nbt0602-619
Gandia, J., Galino, J., Amaral, O. B., Soriano, A., Lluís, C., Franco, R., & Ciruela, F. (2008). Detection of higher–order G protein–coupled receptor oligomers by a combined BRET–BiFC technique. FEBS letters, 582(20), 2979-2984. https://doi.org/10.1016/j.febslet.2008.07.045
Gao, X., Enten, G. A., DeSantis, A. J., & Majetschak, M. (2021). Class AG protein–coupled receptors assemble into functional higher–order hetero–oligomers. FEBS letters, 595(14), 1863-1875. https://doi.org/10.1002/1873-3468.14135
Gehl, C., Kaufholdt, D., Hamisch, D., Bikker, R., Kudla, J., Mendel, R. R., & Hansch, R. (2011). Quantitative analysis of Dynamic protein-protein interactions in planta by a floated–leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors. The Plant Journal, 67(3), 542-553. https://doi.org/10.1111/j.1365-313X.2011.04607.x
Glöckner, N., zur Oven-Krockhaus, S., Rohr, L., Wackenhut, F., Burmeister, M., Wanke, F., ... & Harter, K. (2022). Three-fluorophore FRET Enables the Analysis of Ternary Protein Association in Living Plant Cells. Plants, 11(19), 2630. https://doi.org/10.3390/plants11192630
Gonzalo, Ó., Benedi, A., Vela, L., Anel, A., Naval, J., & Marzo, I. (2023). Study of the Bcl-2 Interactome by BiFC Reveals Differences in the Activation Mechanism of Bax and Bak. Cells, 12(5), 800. https://doi.org/10.3390/cells12050800
Han, Y., Branon, T. C., Martell, J. D., Boassa, D., Shechner, D., Ellisman, M. H., & Ting, A. (2019). Directed Evolution of Split APEX2 Peroxidase. ACS chemical biology, 14(4), 619-635. https://doi.org/10.1021/acschembio.8b00919
Han, S., Zhao, B. S., Myers, S. A., Carr, S. A., He, C., & Ting, A. Y. (2020). RNA–protein interaction mapping via MS2-or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences, 117(36), 22068-22079. https://doi.org/10.1073/pnas.2006617117
Hashimoto, T., Adams, K. W., Fan, Z., McLean, P. J., & Hyman, B. T. (2011). Characterization of oligomer formation of amyloid-β peptide using a split-luciferase complementation assay. The Journal of Biological Chemistry, 286(31), 27081-27091. https://doi.org/10.1074/jbc.M111.257378
Héroux, M., Hogue, M., Lemieux, S., & Bouvier, M. (2007). Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. Journal of Biological Chemistry, 282(43), 31610-31620. https://doi.org/10.1074/jbc.M701790200
Hida, N., Awais, M., Takeuchi, M., Ueno, N., Tashiro, M., Takagi, C.,... & Ozawa, T. (2009). High-sensitivity real-time imaging of dual protein-protein interactions in living subjects using multicolor luciferases. PLOS ONE, 4(6) https://doi.org/10.1371/journal.pone.0005868
Hohlbein, J., Craggs, T. D., & Cordes, T. (2014). Alternating-laser excitation: single-molecule FRET and beyond. Chemical Society Reviews, 43(4), 1156-1171. https://doi.org/10.1039/C3CS60233H
Imani, M., Mohajeri, N., Rastegar, M., & Zarghami, N. (2021). Recent advances in FRET-Based biosensors for biomedical applications. Analytical biochemistry, 630, 114323. https://doi.org/10.1016/j.ab.2021.114323
Johnsson, N., & Varshavsky, A. (1994). Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10340-10344. https://doi.org/10.1073/pnas.91.22.10340
Jia, Y., Bleicher, F., Reboulet, J., & Merabet, S. (2021). Bimolecular Fluorescence Complementation (BiFC) and Multiplexed Imaging of Protein-protein Interactions in Human Living Cells. Methods in Molecular Biology, 2350, 173-190. https://doi.org/10.1007/978-1-0716-1593-5_12
Jiménez-Mejía, G., Montalvo-Méndez, R., Hernández-Bautista, C., Altamirano-Torres, C., Vázquez, M., Zurita, M., & Reséndez-Pérez, D. (2022). Trimeric complexes of Antp-TBP with TFIIEβ or Exd modulate transcriptional activity. Hereditas, 159(1), 1-12. https://doi.org/10.1186/s41065-022-00239-8
Kerppola, T. K. (2008). Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu. Rev. Biophys., 37(1), 465-487. https://doi.org/10.1146/annurev.biophys.37.032807.125842.
Kobayashi, H., Picard, L. P., Schönegge, A. M., & Bouvier, M. (2019). Bioluminescence resonance energy transfer–based imaging of protein-protein interactions in living cells. Nature Protocols, 14(4), 1084-1107. https://doi.org/10.1038/s41596-019-0129-7
Lage, K. (2014). Protein-protein interactions and genetic diseases: The interactome. Biochimica et Biophysica Acta, 1842(10), 1971-1980. https://doi.org/10.1016/j.bbadis.2014.05.028
Lang, Y., Li, Z., & Li, H. (2019). Analysis of protein-protein interactions by split luciferase complementation assay. Current Protocols in Toxicology, 82(1). https://doi.org/10.1002/cptx.90
Lee, Y., Chun, S. K., & Kim, K. (2015). Sumoylation controls CLOCK-BMAL1-mediated clock resetting via CBP recruitment in nuclear transcriptional foci. Biochimica et Biophysica Acta, 1853(10), 2697-2708. https://doi.org/10.1016/j.bbamcr.2015.07.005
Li, C., Wang, Z., Cao, Y., Wang, L., Ji, J., Chen, Z., Deng, T., Jiang, T., Cheng, G., & Qin, F. X. F. (2017). Screening for novel small-molecule inhibitors targeting the assembly of influenza virus polymerase complex by a bimolecular luminescence complementation-based reporter system. Journal of Virology, 91(5). https://doi.org/10.1128/JVI.02282-16
Lim, J., Petersen, M., Bunz, M., Simon, C., & Schindler, M. (2022). Flow cytometry based-FRET: basics, novel developments and future perspectives. Cellular and Molecular Life Sciences, 79(4), 217. https://doi.org/10.1007/s00018-022-04232-2
Lopez-Gimenez, J. F., Canals, M., Pediani, J. D., & Milligan, G. (2007). The α1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Molecular Pharmacology, 71(4), 1015-1029. https://doi.org/10.1124/mol.106.033035
Montalvo-Méndez, R. de J. (2020). Disección molecular de la interacción de TBP con las homeoproteínas Scr, Ubx y AbdB mediante BiFC en la línea celular HEK293 (tesis de maestría). Universidad Autónoma de Nuevo León. http://eprints.uanl.mx/id/eprint/21785
Nguyen, T. T. M., Munkhzul, C., Kim, J., Kyoung, Y., Vianney, M., Shin, S.,... & Lee, M. (2023). In vivo profiling of the Zucchini proximal proteome in the Drosophila ovary. Development, 150(4), dev201220. https://doi.org/10.1242/dev.201220
Parrish, J. R., Gulyas, K. D., & Finley Jr, R. L. (2006). Yeast two-hybrid contributions to interactome mapping. Current Opinion in Biotechnology, 17(4), 387-393. https://doi.org/10.1016/j.copbio.2006.06.006
Paiano, A., Margiotta, A., De Luca, M., & Bucci, C. (2019). Yeast two-hybrid assay to identify interacting proteins. Current Protocols in Protein Science, 95(1), e70. https://doi.org/10.1002/cpps.70
Peter, M. F., Gebhardt, C., Mächtel, R., Muñoz, G. G. M., Glaenzer, J., Narducci, A.,... & Hagelueken, G. (2022). Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. Nature Communications, 13(4396). https://doi.org/10.1038/s41467-022-31945-6
Ramirez, C. A., Egetemaier, S., & Béthune, J. (2021). Context-pecific and proximity-dependent labeling for the proteomic analysis of spatiotemporally defined protein complexes with Split-BioID. Methods in Molecular Biology, 2247, 303-318. https://doi.org/10.1007/978-1-0716-1126-5_17
Rebois, R. V., Robitaille, M., Galés, C., Dupré, D. J., Baragli, A., Trieu, P., Ethier, N., Bouvier, M., & Hébert, T. E. (2006). Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3. 1 channels in living cells. Journal of Cell Science, 119, 2807-2818. https://doi.org/10.1242/jcs.03021
Renna, L., Stefano, G., & Brandizzi, F. (2018). Live cell imaging and confocal microscopy. In Plant Vacuolar Trafficking. Methods and Protocols (pp. 117-130). Humana Press. https://doi.org/10.1007/978-1-4939-7856-4_9
Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., & Ting, A. Y. (2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 339(6125), 1328-1331. https://doi.org/10.1126/science.1230593
Rossi, F., Charlton, C. A., & Blau, H. M. (1997). Monitoring protein-protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8405-8410. https://doi.org/10.1073/pnas.94.16.8405
Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. Journal of Cell Biology, 196(6), 801-810. https://doi.org/10.1083/jcb.201112098
Secco, P., D’Agostini, E., Marzari, R., Licciulli, M., Di Niro, R., D’Angelo, S.,... & Sblattero, D. (2009). Antibody library selection by the β-lactamase protein fragment complementation assay. Protein Engineering, Design & Selection, 22(3), 149-158. https://doi.org/10.1093/protein/gzn053
Szalai, A. M., Zaza, C., & Stefani, F. D. (2021). Super-resolution FRET measurements. Nanoscale, 13(44), 18421-18433. https://doi.org/10.1039/D1NR05769C
Shyu, Y. J., Suarez, C. D., & Hu, C. D. (2008). Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nature Protocols, 3, 1693-1702. https://doi.org/10.1038/nprot.2008.157
Strotmann, V. I., & Stahl, Y. (2022). Visualization of in vivo protein-protein interactions in plants. Journal of Experimental Botany, 73(12), 3866-3880. https://doi.org/10.1093/jxb/erac139
Tarabara, U., Kirilova, E., Kirilov, G., Vus, K., Zhytniakivska, O., Trusova, V., & Gorbenko, G. (2021). Benzanthrone dyes as mediators of cascade energy transfer in insulin amyloid fibrils. Journal of Molecular Liquids, 324(15), 115102. https://doi.org/10.1016/j.molliq.2020.115102
Thaminy, S., Miller, J., & Stagljar, I. (2004). The split-ubiquitin membrane-based yeast two-hybrid system. Methods in Molecular Biology, 261, 297-312. https://doi.org/10.1385/1-59259-762-9:297
Verhoef, L. G., & Wade, M. (2017). Visualization of protein interactions in living cells using bimolecular luminescence complementation (BiLC). Current Protocols in Protein Science, 90(1), 30.5.1-30.5.14. https://doi.org/10.1002/cpps.42
Verma, V., Joshi, G., Gupta, A., & Chaudhary, V. K. (2020). An efficient ORF selection system for DNA fragment libraries based on split beta-lactamase complementation. PLOS ONE, 15(7), e0235853. https://doi.org/10.1371/journal.pone.0235853
Vidi, P. A., Chen, J., Irudayaraj, J. M., & Watts, V. J. (2008). Adenosine A2A receptors assemble into higher-order oligomers at the plasma membrane. Febs Letters, 582(29), 3985-3990. https://doi.org/10.1016/j.febslet.2008.09.062
Wang, T., Yang, N., Liang, C., Xu, H., An, Y., Xiao, S., Zheng, M., Liu, L., Wang, G., & Nie, L. (2020). Detecting protein-protein interaction based on protein fragment complementation assay. Current Protein and Peptide Science, 21(6), 598-610. https://doi.org/10.2174/1389203721666200213102829
Wang, X., & Pei, G. (2018). Visualization of Alzheimer’s disease related α-/β-/γ-secretase ternary complex by bimolecular fluorescence complementation-based fluorescence resonance energy transfer. Frontiers in Molecular Neuroscience, 11, 431. https://doi.org/10.3389/fnmol.2018.00431
Wehrman, T., Kleaveland, B., Her, J. H., Balint, R. F., & Blau, H. M. (2002). Protein-protein interactions monitored in mammalian cells via complementation of β-lactamase enzyme fragments. Proceedings of the National Academy of Sciences, 99(6), 3469-3474. https://doi.org/10.1073/pnas.062043699
Yang, Z., Wang, H., Wang, Y., Ren, Y., & Wei, D. (2018). Manufacturing multienzymatic complex reactors in vivo by self-assembly to improve the biosynthesis of itaconic acid in Escherichia coli. ACS Synthetic Biology, 7(5), 1244-1250. https://doi.org/10.1021/acssynbio.8b00086