Mientras más, mejor: Análisis de interacciones proteicas mediante fluorescencia

Main Article Content

Diana Reséndez-Pérez http://orcid.org/0000-0002-4709-7677
Rubén Montalvo-Méndez http://orcid.org/0000-0002-0469-5562
Gustavo Jiménez-Mejía

Resumen

El estudio de las interacciones entre proteínas es de gran relevancia para entender los mecanismos


moleculares dentro de las células. En las últimas décadas, se han desarrollado estrategias que permiten


el análisis de interacciones proteicas sin alterar la estructura celular e incluso se ha logrado combinar


estas técnicas para identificar la formación de complejos multiproteicos. El objetivo de esta revisión es


mostrar un panorama general en el estudio de las interacciones proteína-proteína, haciendo énfasis en


estrategias fluorescentes tanto de complementación como de transferencia de energía y su combinación


para el análisis de las interacciones proteicas. Se concluye que las estrategias de marcaje fluorescente


como BiFC, BiLC, FRET y BRET han desplazado las técnicas clásicas con enfoques más novedosos.

Article Details

Como citar
RESÉNDEZ-PÉREZ, Diana; MONTALVO-MÉNDEZ, Rubén; JIMÉNEZ-MEJÍA, Gustavo. Mientras más, mejor: Análisis de interacciones proteicas mediante fluorescencia. CIENCIA ergo-sum, [S.l.], v. 31, oct. 2023. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/20682>. Fecha de acceso: 30 mayo 2024 doi: https://doi.org/10.30878/ces.v31n0a40.
Sección
Espacio del divulgador

Citas

Altamirano-Torres, C., Salinas-Hernández, J. E., Cárdenas-Chávez, D. L., Rodríguez-Padilla, C., & Reséndez-Pérez, D. (2018). Transcription factor TFIIEβ interacts with two exposed positions in helix 2 of the Antennapedia homeodomain to control homeotic function in Drosophila. Plos one, 13(10), e0205905.
Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J., & Karin, M. (1997). Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Molecular and cellular biology, 17(6), 3094-3102.
Bischof, J., Duffraisse, M., Furger, E., Ajuria, L., Giraud, G., Vanderperre, S., ... & Merabet, S. (2018). Generation of a versatile BiFC ORFeome library for analyzing protein–protein interactions in live Drosophila. Elife, 7, e38853.
Boora, N., Verma, V., Khurana, R., Gawande, G., Bhimrajka, S., Chaprana, K., ... & Kapoor, S. (2021). Determination of Tripartite Interaction between Two Monomers of a MADS-box Transcription Factor and a Calcium Sensor Protein by BiFC-FRET-FLIM Assay. Journal of Visualized Experiments. DOI, 10.
Broder, Y. C., Katz, S., & Aronheim, A. (1998). The ras recruitment system, a novel approach to the study of protein–protein interactions. Current Biology, 8(20), 1121-1130.
Broome, A. M., Bhavsar, N., Ramamurthy, G., Newton, G., & Basilion, J. P. (2010). Expanding the utility of β-galactosidase complementation: Piece by piece. Molecular pharmaceutics, 7(1), 60-74.
Ciruela, F. (2008). Fluorescence-based methods in the study of protein–protein interactions in living cells. Current opinion in biotechnology, 19(4), 338-343.
Cevheroglu, O., Murat, M., Mingu-Akmete, S., & Son, C. D. (2021). Ste2p Under the Microscope: the Investigation of Oligomeric States of a Yeast G Protein-Coupled Receptor. The Journal of Physical Chemistry B, 125(33), 9526-9536.
Che, Y., & Khavari, P. A. (2017). Research techniques made simple: emerging methods to elucidate protein interactions through spatial proximity. Journal of Investigative Dermatology, 137(12), e197-e203.
Chen, M., Li, W., Zhang, Z. P., Pan, J., Sun, Y., Zhang, X., ... & Cui, Z. (2018). Three-fragment fluorescence complementation for imaging of ternary complexes under physiological conditions. Analytical chemistry, 90(22), 13299-13305.
Dai J-P, Li W-Z, Zhao X-F, Wang G-F, Yang J-C, Zhang L, et al. (2012) A Drug Screening Method Based on the Autophagy Pathway and Studies of the Mechanism of Evodiamine against Influenza A Virus. PLoS ONE 7(8): e42706. https://doi.org/10.1371/journal.pone.0042706
Ding, H., & Johnson, G. V. (2008). New application of β-galactosidase complementation to monitor tau self‐association. Journal of neurochemistry, 106(4), 1545-1551.
Galarneau, A., Primeau, M., Trudeau, L. E., & Michnick, S. W. (2002). β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nature biotechnology, 20(6), 619-622.
Gandia, J., Galino, J., Amaral, O. B., Soriano, A., Lluís, C., Franco, R., & Ciruela, F. (2008). Detection of higher-order G protein-coupled receptor oligomers by a combined BRET–BiFC technique. FEBS letters, 582(20), 2979-2984.
Gao, X., Enten, G. A., DeSantis, A. J., & Majetschak, M. (2021). Class AG protein‐coupled receptors assemble into functional higher‐order hetero‐oligomers. FEBS letters, 595(14), 1863-1875.
Gehl, C., Kaufholdt, D., Hamisch, D., Bikker, R., Kudla, J., Mendel, R. R., & Hansch, R. (2011). Quantitative analysis of Dynamic protein-protein interactions in planta by a floated-leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors. The Plant Journal, 67(3), 542–553. doi: 10.1111/j.1365-313X.2011.04607.x.
Glöckner, N., zur Oven-Krockhaus, S., Rohr, L., Wackenhut, F., Burmeister, M., Wanke, F., ... & Harter, K. (2022). Three-fluorophore FRET enables the analysis of ternary protein association in living plant cells. Plants, 11(19), 2630.
Gonzalo, Ó., Benedi, A., Vela, L., Anel, A., Naval, J., & Marzo, I. (2023). Study of the Bcl-2 Interactome by BiFC Reveals Differences in the Activation Mechanism of Bax and Bak. Cells, 12(5), 800.
Han, Y., Branon, T. C., Martell, J. D., Boassa, D., Shechner, D., Ellisman, M. H., & Ting, A. (2019). Directed evolution of split APEX2 peroxidase. ACS chemical biology, 14(4), 619-635.
Han, S., Zhao, B. S., Myers, S. A., Carr, S. A., He, C., & Ting, A. Y. (2020). RNA–protein interaction mapping via MS2-or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences, 117(36), 22068-22079.
Hashimoto, T., Adams, K. W., Fan, Z., McLean, P. J., & Hyman, B. T. (2011). Characterization of oligomer formation of amyloid-β peptide using a split-luciferase complementation assay. The Journal of Biological Chemistry, 286(31), 27081–27091. doi: 10.1074/jbc.M111.257378.
Héroux, M., Hogue, M., Lemieux, S., & Bouvier, M. (2007). Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. Journal of Biological Chemistry, 282(43), 31610-31620.
Hida, N., Awais, M., Takeuchi, M., Ueno, N., Tashiro, M., Takagi, C., . . . Ozawa, T. (2009). High-sensitivity real-time imaging of dual protein-protein interactions in living subjects using multicolor luciferases. PLoS One, 4 (6)
Hohlbein, J., Craggs, T. D., & Cordes, T. (2014). Alternating-laser excitation: single-molecule FRET and beyond. Chemical Society Reviews, 43(4), 1156-1171.
Johnsson, N., & Varshavsky, A. (1994). Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of the National Academy of Sciences, 91(22), 10340-10344.
Jia, Y., Bleicher, F., Reboulet, J., & Merabet, S. (2021). Bimolecular Fluorescence Complementation (BiFC) and Multiplexed Imaging of Protein–Protein Interactions in Human Living Cells. Multiplexed Imaging: Methods and Protocols, 173-190.
Jiménez-Mejía, G., Montalvo-Méndez, R., Hernández-Bautista, C., Altamirano-Torres, C., Vázquez, M., Zurita, M., & Reséndez-Pérez, D. (2022). Trimeric complexes of Antp-TBP with TFIIEβ or Exd modulate transcriptional activity. Hereditas, 159(1), 1-12.
Kobayashi, H., Picard, L. P., Schönegge, A. M., & Bouvier, M. (2019). Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells. Nature protocols, 14(4), 1084-1107.
Lage, K. (2014). Protein–protein interactions and genetic diseases: the interactome. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(10), 1971-1980.
Lang, Y., Li, Z., & Li, H. (2019). Analysis of protein‐protein interactions by split luciferase complementation assay. Current protocols in toxicology, 82(1), e90.
Lee, Y., Chun, S. K., & Kim, K. (2015). Sumoylation controls CLOCK-BMAL1-mediated clock resetting via CBP recruitment in nuclear transcriptional foci. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(10), 2697-2708.
Li, C., Wang, Z., Cao, Y., Wang, L., Ji, J., Chen, Z., ... & Qin, F. X. F. (2017). Screening for novel small-molecule inhibitors targeting the assembly of influenza virus polymerase complex by a bimolecular luminescence complementation-based reporter system. Journal of Virology, 91(5), e02282-16.
Lim, J., Petersen, M., Bunz, M., Simon, C., & Schindler, M. (2022). Flow cytometry based-FRET: basics, novel developments and future perspectives. Cellular and Molecular Life Sciences, 79(4), 217.
Lopez-Gimenez, J. F., Canals, M., Pediani, J. D., & Milligan, G. (2007). The α1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Molecular pharmacology, 71(4), 1015-1029.
Nguyen, T. T. M., Munkhzul, C., Kim, J., Kyoung, Y., Vianney, M., Shin, S., ... & Lee, M. (2023). In vivo profiling of the Zucchini proximal proteome in the Drosophila ovary. Development, 150(4), dev201220.
Parrish, J. R., Gulyas, K. D., & Finley Jr, R. L. (2006). Yeast two-hybrid contributions to interactome mapping. Current opinion in biotechnology, 17(4), 387-393.
Paiano, A., Margiotta, A., De Luca, M., & Bucci, C. (2019). Yeast two‐hybrid assay to identify interacting proteins. Current protocols in protein science, 95(1), e70.
Peter, M. F., Gebhardt, C., Mächtel, R., Muñoz, G. G. M., Glaenzer, J., Narducci, A., ... & Hagelueken, G. (2022). Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. Nature Communications, 13(1), 4396.
Ramirez, C. A., Egetemaier, S., & Béthune, J. (2021). Context-specific and proximity-dependent labeling for the proteomic analysis of spatiotemporally defined protein complexes with Split-BioID. Multiprotein Complexes: Methods and Protocols, 303-318.
Rebois, R. V., Robitaille, M., Galés, C., Dupré, D. J., Baragli, A., Trieu, P., ... & Hébert, T. E. (2006). Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3. 1 channels in living cells. Journal of cell science, 119(13), 2807-2818.
Renna, L., Stefano, G., & Brandizzi, F. (2018). Live cell imaging and confocal microscopy. Plant Vacuolar Trafficking: Methods and Protocols, 117-130
Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., & Ting, A. Y. (2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Sc.
Rossi, F., Charlton, C. A., & Blau, H. M. (1997). Monitoring protein–protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proceedings of the National Academy of Sciences, 94(16), 8405-8410.
Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. Journal of Cell Biology, 196(6), 801-810.
Secco, P., D'Agostini, E., Marzari, R., Licciulli, M., Di Niro, R., D'Angelo, S., ... & Sblattero, D. (2009). Antibody library selection by the β-lactamase protein fragment complementation assay. Protein Engineering, Design & Selection, 22(3), 149-158.
Shyu, Y. J., Suarez, C. D., & Hu, C. D. (2008). Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nature protocols, 3(11), 1693-1702.
Strotmann, V. I., & Stahl, Y. (2022). Visualization of in vivo protein–protein interactions in plants. Journal of Experimental Botany, 73(12), 3866-3880.
Tarabara, U., Kirilova, E., Kirilov, G., Vus, K., Zhytniakivska, O., Trusova, V., & Gorbenko, G. (2021). Benzanthrone dyes as mediators of cascade energy transfer in insulin amyloid fibrils. Journal of Molecular Liquids, 324, 115102.
Thaminy, S., Miller, J., & Stagljar, I. (2004). The split-ubiquitin membrane-based yeast two-hybrid system. Protein-Protein Interactions: Methods and Applications, 297-312
Verhoef, L. G., & Wade, M. (2017). Visualization of protein interactions in living cells using bimolecular luminescence complementation (BiLC). Current Protocols in Protein Science, 90(1), 30-5.
Verma, V., Joshi, G., Gupta, A., & Chaudhary, V. K. (2020). An efficient ORF selection system for DNA fragment libraries based on split beta-lactamase complementation. Plos one, 15(7), e0235853.
Vidi, P. A., Chen, J., Irudayaraj, J. M., & Watts, V. J. (2008). Adenosine A2A receptors assemble into higher-order oligomers at the plasma membrane. Febs Letters, 582(29), 3985-3990.
Wang, T., Yang, N., Liang, C., Xu, H., An, Y., Xiao, S., ... & Nie, L. (2020). Detecting protein-protein interaction based on protein fragment complementation assay. Current Protein and Peptide Science, 21(6), 598-610.
Wang, X., & Pei, G. (2018). Visualization of Alzheimer’s disease related α-/β-/γ-secretase ternary complex by bimolecular fluorescence complementation-based fluorescence resonance energy transfer. Frontiers in molecular neuroscience, 11, 431.
Wehrman, T., Kleaveland, B., Her, J. H., Balint, R. F., & Blau, H. M. (2002). Protein–protein interactions monitored in mammalian cells via complementation of β-lactamase enzyme fragments. Proceedings of the National Academy of Sciences, 99(6), 3469-3474.
Yang, Z., Wang, H., Wang, Y., Ren, Y., & Wei, D. (2018). Manufacturing multienzymatic complex reactors in vivo by self-assembly to improve the biosynthesis of itaconic acid in Escherichia coli. ACS Synthetic Biology, 7(5), 1244-1250.