Análisis del microbioma de las garrapatas de ganado, un nuevo abordaje basado en metagenómica

Main Article Content

Hugo Aguilar-Díaz http://orcid.org/0000-0002-6497-6462
Rosa Estela Quiroz-Castañeda http://orcid.org/0000-0002-1099-2440

Resumen

Las recientes investigaciones metagenómicas de garrapatas han revelado que sus microbiomas poseen una diversidad microbiana conformada por endosimbiontes y patógenos (patobioma), causantes de enfermedades en el humano y otros animales. Las garrapatas son vectores de diversas enfermedades al ganado bovino, por lo que un estudio de mayor alcance permitirá elucidar la composición de su microbioma con la finalidad de proponer nuevas estrategias de control y prevención como el desarrollo de vacunas antigarrapata. Este proceso resulta ser prometedor y posee como base la identificación de bacterias fundamentales para la supervivencia del vector. De acuerdo con este contexto, se presenta el abordaje metagenómico aplicado a las garrapatas para la identificación de la microbiota y el respectivo microbioma.

Article Details

Como citar
AGUILAR-DÍAZ, Hugo; QUIROZ-CASTAÑEDA, Rosa Estela. Análisis del microbioma de las garrapatas de ganado, un nuevo abordaje basado en metagenómica. CIENCIA ergo-sum, [S.l.], v. 31, feb. 2023. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/18631>. Fecha de acceso: 30 mayo 2024 doi: https://doi.org/10.30878/ces.v31n0a22.
Sección
Ciencias naturales y agropecuarias

Citas

Abraham, N. M., Liu, L., Jutras, B. L., Yadav, A. K., Narasimhan, S., Gopalakrishnan, V., & Fikrig, E. (2017). Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proceedings of the National Academy of Sciences of the United States of America, 114(5). https://doi.org/10.1073/pnas.1613422114
Adegoke, A., Kumar, D., Bobo, C., Rashid, M. I., Durrani, A. Z., Sajid, M. S., & Karim, S. (2020). Tick-borne pathogens shape the native microbiome within tick vectors. Microorganisms. https://doi.org/10.3390/microorganisms8091299
Aguilar-Díaz, H., Quiroz-Castañeda, R. E., Cobaxin-Cárdenas, M., Salinas-Estrella, E., & Amaro-Estrada, I. (2021). Advances in the study of the tick cattle microbiota and the influence on vectorial capacity. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.710352
Aivelo, T., Norberg, A., & Tschirren, B. (2019). Bacterial microbiota composition of Ixodes ricinus ticks: the role of environmental variation, tick characteristics and microbial interactions. PeerJ, 7. https://doi.org/10.7717/peerj.8217
Andreotti, R., Perez de Leon, A. A., Dowd, S. E., Guerrero, F. D., Bendele, K. G., & Scoles, G. A. (2011). Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiology, 11(1), 6. https://doi.org/10.1186/1471-2180-11-6
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C. C., Charles, T., & Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 103. https://doi.org/10.1186/s40168-020-00875-0
Cabezas-Cruz, A., Pollet, T., Estrada-Peña, A., Allain, Eleonore, Bonnet, S. I., & Moutailler, S. (2019). Handling the microbial complexity associated to ticks. In Muhammad Abubakar & Piyumali Kanchana Perera (Eds.), Ticks and Tick-Borne Pathogens (pp. 137-144). London: InTech Open. http://www.intechopen.com/books/trends-in-telecommunications-technologies/gps-total-electron-content-tec- prediction-at-ionosphere-layer-over-the-equatorial-region%0AInTec
Carpi, G., Cagnacci, F., Wittekindt, N. E., Zhao, F., Qi, J., Tomsho, L. P., & Schuster, S. C. (2011). Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE, 6(10). https://doi.org/10.1371/journal.pone.0025604
Clayton, K. A., Gall, C. A., Mason, K. L., Scoles, G. A., & Brayton, K. A. (2015). The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasites & Vectors, 8, 632. https://doi.org/10.1186/s13071-015-1245-z
Clow, K. M., Leighton, P. A., Pearl, D. L., & Jardine, C. M. (2019). A framework for adaptive surveillance of emerging tick-borne zoonoses. One Health, 7, 100083. https://doi.org/10.1016/j.onehlt.2019.100083
Duron, O., Morel, O., Noël, V., Buysse, M., Binetruy, F., Lancelot, R., & Vial, L. (2018). Tick-bacteria mutualism depends on B vitamin synthesis pathways. Current Biology, 28(12). https://doi.org/10.1016/j.cub.2018.04.038
Egan, S. L., Loh, S. M., Banks, P. B., Gillett, A., Ahlstrom, L., Ryan, U. M., & Oskam, C. L. (2020). Bacterial community profiling highlights complex diversity and novel organisms in wildlife ticks. Ticks and Tick-Borne Diseases, 11(3), 101407. https://doi.org/10.1016/j.ttbdis.2020.101407
Escobedo-Hinojosa, W., & Pardo-López, L. (2017). Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection. Pathogens and Disease, 75(5). https://doi.org/10.1093/femspd/ftx058
Franco-Duarte, R., Černáková, L., Kadam, S., Kaushik, K. S., Salehi, B., Bevilacqua, A., & Rodrigues, C. F. (2019). Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms, 7(5), 130. https://doi.org/10.3390/microorganisms7050130
Gall, C. A., Reif, K. E., Scoles, G. A., Mason, K. L., Mousel, M., Noh, S. M., & Brayton, K. A. (2016). The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. The ISME Journal, 10(8), 1846-1855. https://doi.org/10.1038/ismej.2015.266
García-Guizzo, M., Neupane, S., Kucera, M., Perner, J., Frantová, H., da Silva Vaz, I., de Oliveira, P., Kopacek, P., & Zurek, L. (2020). Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Frontiers in Cellular and Infection Microbiology, 10(211). https://doi.org/10.3389/fcimb.2020.00211
Greay, T. L., Gofton, A. W., Paparini, A., Ryan, U. M., Oskam, C. L., & Irwin, P. J. (2018). Recent insights into the tick microbiome gained through next-generation sequencing. Parasites & Vectors, 11(1), 12. https://doi.org/10.1186/s13071-017-2550-5
Grech-Angelini, S., Stachurski, F., Lancelot, R., Boissier, J., Allienne, J. F., Marco, S., & Uilenberg, G. (2016). Ticks (Acari: Ixodidae) infesting cattle and some other domestic and wild hosts on the French Mediterranean island of Corsica. Parasites & Vectors, 9(1), 582. https://doi.org/10.1186/s13071-016-1876-8
Hamner, S., Brown, B. L., Hasan, N. A., Franklin, M. J., Doyle, J., Eggers, M. J., & Ford, T. E. (2019). Metagenomic profiling of microbial pathogens in the little bighorn river, Montana. International Journal of Environmental Research and Public Health, 16(7). https://doi.org/10.3390/ijerph16071097
Macaluso, K. R., Sonenshine, D. E., Ceraul, S. M., & Azad, A. F. (2002). Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. Journal of Medical Entomology, 39(6), 809-813. https://doi.org/10.1603/0022-2585-39.6.809
Mateos-Hernández, L., Obregón, D., Maye, J., Borneres, J., Versille, N., de la Fuente, J., Estrada-Peña, A., Hodžić, A., Šimo, L., & Cabezas-Cruz, (2020). Anti-Tick Microbiota Vaccine impacts Ixodes ricinus performance during feeding. Vaccines, 21, 702. https://doi.org/10.3390/vaccines8040702
Miller, R. R., Montoya, V., Gardy, J. L., Patrick, D. M., & Tang, P. (2013). Metagenomics for pathogen detection in public health. Genome Medicine, 5(9), 81. https://doi.org/10.1186/gm485
Moreno, C. X., Moy, F., Daniels, T. J., Godfrey, H. P., & Cabello, F. C. (2006). Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environmental Microbiology, 8(5), 761-772. https://doi.org/10.1111/j.1462-2920.2005.00955.x
Narasimhan, S., Rajeevan, N., Liu, L., Zhao, Y. O., Heisig, J., Pan, J., & Fikrig, E. (2014a). Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host & Microbe, 15(1), 58-71. https://doi.org/10.1016/j.chom.2013.12.001
Narasimhan, S., Coumou, J., Schuijt, T. J., Boder, E., Hovius, J. W., & Fikrig, E. (2014b). A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission. PLOS Pathogens, 10(8). https://doi.org/10.1371/journal.ppat.1004278
Narasimhan, & Fikrig, E. (2015). Tick microbiome: the force within. Trends in Parasitology, 31(7), 315-323. https://doi.org/10.1016/j.pt.2015.03.010
Narayanan, Govindarajulu, Krishnapriya, M. Varier, & Gajendran, B. (2020). Chapter 16 - Insect gut microbiome and its. In S. D. M. and P. Bhat (Ed.), Recent Advancements in Microbial Diversity (pp. 379-395). Academic Press, Elsevier.
Neelakanta, G., & Sultana, H. (2013). The use of metagenomic approaches to analyze changes in microbial communities. Microbiology Insights, 6, MBI.S10819. https://doi.org/10.4137/MBI.S10819
Ng, T. F. F., Kondov, N. O., Deng, X., Van Eenennaam, A., Neibergs, H. L., & Delwart, E. (2015). A metagenomics and case-control study to identify viruses associated with bovine respiratory disease. Journal of Virology, 89(10), 5340-5349. https://doi.org/10.1128/JVI.00064-15
Pereira, F. (2019). Chapter 28-Metagenomics: A gateway to drug. In S. N. M. & M. M. Naik (Ed.), Advances in Biological Science Research (pp. 453-468). Academic Press, Elsevier.
Pollet, T., Sprong, H., Lejal, E., Krawczyk, A. I., Moutailler, S., Cosson, J.-F., & Estrada-Peña, A. (2020). The scale affects our view on the identification and distribution of microbial communities in ticks. Parasites & Vectors, 13(1), 36. https://doi.org/10.1186/s13071-020-3908-7
Rodríguez-Vivas, R. I., Grisi, L., De León, A. A. P., Villela, H. S., De Jesús Torres-Acostaa, J. F., Sánchez, H. F., & Carrasco, D. G. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61-74. https://doi.org/10.22319/rmcp.v8i1.4305
Segura, J. A., Isaza, J. P., Botero, L. E., Alzate, J. F., & Gutiérrez, L. A. (2020). Assessment of bacterial diversity of Rhipicephalus microplus ticks from two livestock agroecosystems in Antioquia, Colombia. PLOS ONE, 15(7), e0234005. https://doi.org/10.1371/journal.pone.0234005
Silatsa, B. A., Simo, G., Githaka, N., Mwaura, S., Kamga, R. M., Oumarou, F., & Pelle, R. (2019). A comprehensive survey of the prevalence and spatial distribution of ticks infesting cattle in different agro-ecological zones of Cameroon. Parasites & Vectors, 12(1), 489. https://doi.org/10.1186/s13071-019-3738-7
Stewart, P. E., & Bloom, M. E. (2020). Sharing the ride: Ixodes scapularis symbionts and their interactions. Frontiers in Cellular and Infection Microbiology, 10, 142. https://doi.org/10.3389/fcimb.2020.00142
Tokarz, R., & Lipkin, W. I. (2020). Discovery and surveillance of tick-borne pathogens. Journal of Medical Entomology, 58(4), 1-11. https://doi.org/10.1093/jme/tjaa269
Wang, Y., Hu, Y., & Gao, G. F. (2020). Combining metagenomics and metatranscriptomics to study human, animal and environmental resistomes. Medicine in Microecology, 3, 100014. https://doi.org/10.1016/j.medmic.2020.100014
Zhuang, L., Du, J., Cui, X.-M., Li, H., Tang, F., Zhang, P.-H., & Liu, W. (2018). Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China. Infectious Diseases of Poverty, 7(1), 45. https://doi.org/10.1186/s40249-018-0417-4