Análisis teórico sobre la identidad del territorio como una estrategia para el desarrollo local
Main Article Content
Resumen
Se reflexiona teóricamente sobre las estrategias de la identidad territorial que se llevan a cabo en algunas comunidades del estado de Oaxaca, las cuales colaboran con el desarrollo local. Para el objetivo del artículo, se detallan los elementos teóricos más simbólicos y se señala que pueden ser valorizados y generar capacidades para el crecimiento del desarrollo local destacando los elementos de cultura, organización comunitaria y riqueza biocultural para la identidad territorial, así como los elementos económicos, sociales y ambientales para el desarrollo local. Finalmente, los criterios emitidos en este trabajo se sustentan en un análisis documental mediante la sistematización y el estudio de los principales casos de éxito de las comunidades con estrategias locales en el estado de Oaxaca.
Article Details

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Citas
Astumian, R. D., Mukherjee, S., & Warshel, A. (2016). The physics and physical chemistry of molecular machines. ChemPhysChem, 17(12), 1719-1741. https://doi.org/10.1002/cphc.201600184
Balzani, V., Credi, A., & Venturi, M. (2003). Molecular Devices and Machines – A Journey into the Nano World. Wiley. https://doi.org/10.1002/3527601600
Balzani, V., V, Credi, A., Raymo, F. M., & Stoddart, J. F. (2000). Artificial molecular machines. Angewandte Chemie International Edition, 39(19), 3348-3391. https://doi.org/10.1002/1521-3773(20001002)39:19<3348::aid-anie3348>3.0.co;2-x
Baroncini, M., Casimiro, L., de Vet, C., Groppi, J., Silvi, S., & Credi, A. (2018). Making and operating molecular machines: a multidisciplinary challenge. ChemistryOpen, 7(2), 169-179. https://doi.org/10.1002/open.201700181
Baroncini, M., Silvi, S., & Credi, A. (2019). Photo- and redox-Driven artificial molecular motors. Chemical Reviews, 120(1), 200-268. https://doi.org/10.1021/acs.chemrev.9b00291
Browne, W. R., & Feringa, B. L. (2006). Making molecular machines work. Nature nanotechnology, 1(1), 25-35. https://doi.org/10.1038/nnano.2006.45
Cameron, D., & Eisler, S. (2018). Photoswitchable double bonds: Synthetic strategies for tunability and versatility. Journal of Physical Organic Chemistry, 31(10), e3858. https://doi.org/10.1002/poc.3858
Ceroni, P., Credi, A., & Venturi, M. (2014). Light to investigate (read) and operate (write) molecular devices and machines. Chemical Society Reviews, 43(12), 4068-4083. https://doi.org/10.1039/c3cs60400d
Chen, J., Leung, F. K.-C., Stuart, M. C. A., Kajitani, T., Fukushima, T., van der Giessen, E., & Feringa, B. L. (2017). Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nature Chemistry, 10(2), 132-138. https://doi.org/10.1038/nchem.2887
Cnossen, A., Browne, W. R., & Feringa, B. L. (2014). Unidirectional light-driven molecular motors based on overcrowded alkenes. Molecular Machines and Motors, 354, 139-162. https://doi.org/10.1007/128_2013_512
Cordes, T., Schadendorf, T., Priewisch, B., Rück-Braun, K., & Zinth, W. (2008). The Hammett relationship and reactions in the excited electronic state: hemithioindigoZ/E-photoisomerization. The Journal of Physical Chemistry. A, 112(4), 581-588. https://doi.org/10.1021/jp077472l
Credi, A., Silvi, S., & Venturi, M. (2014a). Light-operated machines based on threaded molecular structures. Molecular Machines and Motors, 1-34. https://doi.org/10.1007/128_2013_509
Credi, A., Silvi, S., & Venturi, M. (2014b). Molecular machines and motors. Springer Publishing. https://doi.org/10.1007/978-3-319-08678-1
De Bo, G., Kuschel, S., Leigh, D. A., Lewandowski, B., Papmeyer, M., & Ward, J. W. (2014). Efficient Assembly of Threaded Molecular Machines for Sequence-Specific Synthesis. Journal of the American Chemical Society, 136(15), 5811-5814. https://doi.org/10.1021/ja5022415
Eggers, K., Fyles, T. M., & Montoya-Pelaez, P. J. (2001). Synthesis and characterization of photoswitchable lipids containing hemithioindigo chromophores. The Journal of Organic Chemistry, 66(9), 2966-2977. https://doi.org/10.1021/jo0056848
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T., & Nussbaumer, A. L. (2015). Artificial molecular machines. Chemical Reviews, 115(18), 10081-10206. https://doi.org/10.1021/acs.chemrev.5b00146
Feringa, B. L. (2017). The art of building small: from molecular switches to motors (Nobel lecture). Angewandte Chemie. International Edition, 56(37), 11060-11078. https://doi.org/10.1002/anie.201702979
Feringa, B. L., & Browne, W. R. (2011). Molecular switches. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527634408
García-López, V., Liu, D., & Tour, J. M. (2019). Light-activated organic molecular motors and their applications. Chemical Reviews, 120(1), 79-124. https://doi.org/10.1021/acs.chemrev.9b00221
Gerwien, A., Reinhardt, T., Mayer, P., & Dube, H. (2017). Synthesis of double-bond-substituted hemithioindigo photoswitches. Organic Letters, 20(1), 232-235. https://doi.org/10.1021/acs.orglett.7b03574
Gerwien, A., Mayer, P., & Dube, H. (2018a). Photon-only molecular motor with reverse temperature-dependent efficiency. Journal of the American Chemical Society, 140(48), 16442-16445. https://doi.org/10.1021/jacs.8b10660
Gerwien, A., Schildhauer, M., Thumser, S., Mayer, P., & Dube, H. (2018b). Direct evidence for hula twist and single-bond rotation photoproducts. Nature Communications, 9(1), 2510. https://doi.org/10.1038/s41467-018-04928-9
Gerwien, A., Mayer, P., & Dube, H. (2019). Green light powered molecular state motor enabling eight-shaped unidirectional rotation. Nature Communications, 10, 4449 https://doi.org/10.1038/s41467-019-12463-4
Groppi, J., Baroncini, M., Venturi, M., Silvi, S., & Credi, A. (2019). Design of photo-activated molecular machines: highlights from the past ten years. Chemical Communications, 55(84), 12595-12602. https://doi.org/10.1039/c9cc06516d
Guentner, M., Schildhauer, M., Thumser, S., Mayer, P., Stephenson, D., Mayer, P. J., & Dube, H. (2015). Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nature Communications, 6(1). https://doi.org/10.1038/ncomms9406
Hashidzume, A., Yamaguchi, H., & Harada, A. (2014). Cyclodextrin-Based Molecular Machines. Molecular Machines and Motors, 71-110. https://doi.org/10.1007/128_2014_547
Heard, A. W., & Goldup, S. M. (2020). Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Central Science, 6(2), 117-128. https://doi.org/10.1021/acscentsci.9b01185
Hoffmann, K., Guentner, M., Mayer, P., & Dube, H. (2019a). Symmetric and nonsymmetric bis-hemithioindigos – precise visible light controlled shape-shifters. Organic Chemistry Frontiers, 6(8), 1244-1252. https://doi.org/10.1039/c9qo00202b
Hoffmann, K., Mayer, P., & Dube, H. (2019b). A hemithioindigo molecular motor for metal surface attachment. Organic & Biomolecular Chemistry, 17(7), 1979-1983. https://doi.org/10.1039/c8ob02424c
Huber, L. A., Hoffmann, K., Thumser, S., Böcher, N., Mayer, P., & Dube, H. (2017). Direct observation of hemithioindigo-motor unidirectionality. Angewandte Chemie. International Edition, 56(46), 14536-14539. https://doi.org/10.1002/anie.201708178
Jia, S., Fong, W.-K., Graham, B., & Boyd, B. J. (2018). Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications. Chemistry of Materials, 30(9), 2873-2887. https://doi.org/10.1021/acs.chemmater.8b00357
Kandinska, M. I., Kitova, S. M., Videva, V. S., Stoyanov, S. S., Yordanova, S. B., Baluschev, S. B., Angelova, S. E., & Vasilev, A. A. (2019). Precious metal-free molecular machines for solar thermal energy storage. Beilstein Journal of Organic Chemistry, 15, 1096-1106. https://doi.org/10.3762/bjoc.15.106