Nanomateriales a la vanguardia para combatir el virus SARS-CoV-2

Main Article Content

Perla Sánchez-López http://orcid.org/0000-0001-5295-4269
Sergio Fuentes Moyado http://orcid.org/0000-0002-9843-408X
Vitalii Petranovskii http://orcid.org/0000-0002-8794-0593
Elena Smolentseva http://orcid.org/0000-0003-2562-9094

Resumen

A partir de que se declaró la pandemia causada por el virus SARS-CoV-2, se han realizado una importante cantidad de trabajos para incrementar la protección de las personas ante este problema. El uso de mascarillas y equipo de protección personal es recomendado por la OMS para evitar la propagación del virus. En la actualidad, hay un campo de investigación de creciente interés en el desarrollo de mascarillas y otros materiales de protección que no solo pueden capturar las gotas de bioaerosol, sino que también inactiven al virus. Este es un paso importante para prevenir la propagación del COVID-19 y otras enfermedades infecciosas. El desarrollo de nuevos nanomateriales con propiedades biocidas que puedan ser incorporados en las mascarillas puede ayudar a alcanzar este objetivo incrementando la protección de los seres humanos contra el COVID-19. Efectivamente, estos nuevos dispositivos funcionarían contra cualquier otro virus o bacteria que llegara a presentarse en el futuro.

Article Details

Como citar
SÁNCHEZ-LÓPEZ, Perla et al. Nanomateriales a la vanguardia para combatir el virus SARS-CoV-2. CIENCIA ergo-sum, [S.l.], v. 29, n. 4, dic. 2022. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/17409>. Fecha de acceso: 06 feb. 2025 doi: https://doi.org/10.30878/ces.v29n4a3.
Sección
Espacio del divulgador

Citas

Abramov, O. V., Gedanken, A., Koltypin, Y., Perkas, N., Perelshtein, I., Joyce, E., & Mason, T. J. (2009). Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surface and Coatings Technology, 204(5), 718-722, https://doi.org/10.1016/j.surfcoat.2009.09.030

Ahmed, T., Ogulata, R. T., & Sezgin Bozok, S. (2021). Silver nanoparticles against SARS-CoV-2 and its potential application in medical protective clothing – a review. The Journal of The Textile Institute, 1-14. https://doi.org/10.1080/00405000.2021.1996730.

Bello-Lopez, J. M., Silva-Bermudez, P., Prado, G., Martínez, A., Ibáñez-Cervantes, G., Cureño-Díaz, M. A., Rocha-Zavaleta, L., Manzo-Merino, J., Almaguer-Flores, A., Ramos-Vilchis, C., & Rodil, S. E. (2021). Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomedical Materials, 17(1), 015002. https://doi.org/10.1088/1748-605x/ac3208

Biswas, A., & Jana, N. R. (2020). Cotton Modified with Silica Nanoparticles, N, F Codoped TiO2 Nanoparticles, and Octadecyltrimethoxysilane for Textiles with Self-Cleaning and Visible Light-Based Cleaning Properties. ACS Applied Nano Materials, 4(1), 877-885. https://doi.org/10.1021/acsanm.0c03282

Carvalho, A. P. A., & Conte-Junior, C. A. (2021). Recent advances on nanomaterials to COVID-19 management: A Systematic Review on Antiviral/Virucidal Agents and Mechanisms of SARS-CoV-2 Inhibition/Inactivation. Global Challenges, 5(5), 2000115. https://doi.org/10.1002/gch2.202000115

Castañeda Guillot, C. y Ramos Serpa, G., (2020). Principales pandemias en la historia de la humanidad. Revista Cubana de Pediatría, 92(1). Disponible en http://www.revpediatria.sld.cu/index.php/ped/article/view/1183/714

Cortes, A. A., & Zuñiga, J. M. (2020). The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review. Diagnostic Microbiology and Infectious Disease, 98. https://doi.org/10.1016/j.diagmicrobio.2020.115176

Elkodous, M. A., El-Sayyad, G. S., Nasser, H. A., Elshamy, A. A., Morsi, M., Abdelrahman, I. Y., Kodous, A. S., Mosallam, F. M., Gobara, M., & El-Batal, A. I. (2019). Engineered nanomaterials as potential candidates for HIV Treatment: Between opportunities and challenges. Journal of Cluster Science, 30(3), 531-540. https://doi.org/10.1007/s10876-019-01533-8

Fayaz, A. M., Ao, Z., Girilal, M., Chen, L., Xiao, X., Kalaichelvan, P. T., & Yao, X., (2012). Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection. International Journal of Nanomedicine, 7, 5007-5018. https://doi.org/10.2147/ijn.s34973

Fischer, E. P., Fischer, M. C., Grass, D., Henrion, I., Warren, W. S., & Westman, E. (2020). Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. Science Advances, 6(36). https://doi.org/10.1126/sciadv.abd3083

Hang, X., Peng, H., Song, H., Qi, Z., Miao, X., & Xu, W. (2015). Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro. Journal of Virological Methods, 222, 150-157. https://doi.org/10.1016/j.jviromet.2015.06.010

Hatamie, A., Khan, A., Golabi, M., Turner, A. P. F., Beni, V., Mak, W. C., Sadollahkhani, A., Alnoor, H., Zargar, B., Bano, S., Nur, O., & Willander, M. (2015). Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir, 31(39), 10913-10921. https://doi.org/10.1021/acs.langmuir.5b02341

Jagaran, K., & Singh, M. (2021). Nanomedicine for COVID-19: Potential of copper nanoparticles. Biointerface Research in Applied Chemistry, 11(3), 10716-10728. https://doi.org/10.33263/briac113.1071610728

Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M.R. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 8013-8024. https://doi.org/10.2147/IJN.S189295

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1), 95-101. https://doi: 10.1016/j.nano.2006.12.001.

Kobrakov, K. I., Zakuskin, S. G., Zolina, L. I., Stankevich, G. S., Kuznetsov, D. N., & Rodionov, V. I. (2017). Nanomodified textile materials with biocidal properties: Development and pilot testing of manufacturing technology. Theoretical Foundations of Chemical Engineering, 51(5), 815-819. https://doi.org/10.1134/s004057951705013x

Liu, H., Lee, Y. -Y., Norsten, T. B., & Chong, K. (2013). In situ formation of anti-bacterial silver nanoparticles on cotton textiles. Journal of Industrial Textiles, 44(2), 198-210. https://doi.org/10.1177/1528083713481833

Nosrati, R., Olad, A., & Nofouzi, K. (2015). A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite. Applied Surface Science, 346, 543-553. https://doi.org/10.1016/j.apsusc.2015.04.056

Pérez-Álvarez, M., Cadenas-Pliego, G., Pérez-Camacho, O., Comparán-Padilla, V. E., Cabello-Alvarado, C. J., & Saucedo-Salazar, E. (2021). Green synthesis of Copper nanoparticles using cotton. Polymers, 13(12), 1906. https://doi.org/10.3390/polym13121906

Pilaquinga, F., Morey, J., Torres, M., Seqqat, R., & Piña, M. de las N. (2021). Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WIREs Nanomedicine and Nanobiotechnology, 13(5). https://doi.org/10.1002/wnan.1707

Prado, V. J., Vidal, A. R., & Durán, T. C., (2012). Application of copper bactericidal properties in medical practice. Revista Médica de Chile, 140(10), 1325-1332. http://dx.doi.org/10.4067/S0034-98872012001000014

Ratan, Z. A., Mashrur, F. R., Chhoan, A. P., Shahriar, S. Md., Haidere, M. F., Runa, N. J., Kim, S., Kweon, D. -H., Hosseinzadeh, H., & Cho, J. Y. (2021). Silver nanoparticles as potential antiviral agents. Pharmaceutics, 13(12), 2034. https://doi.org/10.3390/pharmaceutics13122034

Rius-Rocabert, S., Arranz-Herrero, J., Fernández-Valdés, A., Marciello, M., Moreno, S., Llinares-Pinel, F., Presa, J., Hernandez-Alcoceba, R., López-Píriz, R., & Nistal-Villan, E. (2022). Broad virus inactivation using inorganic micro/nano-particulate materials. Materials Today Bio, 13, 100191. https://doi.org/10.1016/j.mtbio.2021.100191

Román, L. E., Gomez, E. D., Solís, J. L., & Gómez, M. M. (2020). Antibacterial cotton fabric functionalized with copper oxide nanoparticles. Molecules, 25(24), 5802. https://doi.org/10.3390/molecules25245802

Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 20-31. https://doi.org/10.1016/j.nano.2006.11.008

Singh, N. A. (2017). Nanotechnology innovations, industrial applications and patents. Environmental Chemistry Letters, 15(2), 185-191. http://doi.org/10.1007/s10311-017-0612-8

Tortella, G., Rubilar, O., Fincheira, P., Pieretti, J. C., Duran, P., Lourenço, I. M., & Seabra, A. B. (2021a). Bactericidal and virucidal activities of biogenic metal-based nanoparticles: Advances and Perspectives. Antibiotics, 10(7), 783. https://doi.org/10.3390/antibiotics10070783

Tortella, G. R., Pieretti, J. C., Rubilar, O., Fernández-Baldo, M., Benavides-Mendoza, A., Diez, M. C., & Seabra, A. B. (2021b). Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Critical Reviews in Biotechnology, 1-19. https://doi.org/10.1080/07388551.2021.1939260

Wang, Q., Wang, C., Zhang, M., Jian, M., & Zhang, Y. (2016). Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Letters, 16(10), 6695-6700. https://doi.org/10.1021/acs.nanolett.6b03597

Weiss, C., Carriere, M., Fusco, L., Capua, I., Regla-Nava, J. A., Pasquali, M., Scott, J. A., Vitale, F., Unal, M. A., & Delogu, L. G. (2020). Toward nanotechnology-enabled approaches against the covid-19 Pandemic. ACS Nano, 14(6), 6383-6406. https://doi.org/10.1021/acsnano.0c03697

Wieczorek, K., Szutkowska, B., & Kierzek, E. (2020). Anti-Influenza strategies based on nanoparticle applications. Pathogens, 9(12), 1020. https://doi.org/10.3390/pathogens9121020

Xu, Q., Wu, Y., Zhang, Y., Fu, F., & Liu, X. (2016). Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder. Fibers and Polymers, 17(11), 1782-1789. https://doi.org/10.1007/s12221-016-6609-2

Yin, I. X., Zhang, J., Zhao, S. I., Mei, M. L., Li, Q., & Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555-2562. https://doi.org/10.2147/IJN.S246764

Yocupicio-Gaxiola, R. I., Petranovskii, V., Sanchez, P., Antunez-Garcia, J., Alonso-Nunez, G., Galvan, D. H., & Murrieta-Rico, F. N. (2021). Prospects for further development of face masks to minimize pandemics functionalization of textile materials with biocide inorganic nanoparticles: A review. IEEE Latin America Transactions, 19(6), 1010-1023. https://doi.org/10.1109/tla.2021.9451247

Zahoor, M., Nazir, N., Iftikhar, M., Naz, S., Zekker, I., Burlakovs, J., Uddin, F., Kamran, A. W., Kallistova, A., Pimenov, N., & Ali Khan, F. (2021). A Review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water, 13(16), 2216. https://doi.org/10.3390/w13162216