Rotores Moleculares Basados en Hemitioindigo Impulsados por Luz: Aspectos Destacados Aspectos Destacados

Main Article Content

José Juan García Sánchez http://orcid.org/0000-0002-6415-7854
Samanta Estefania Cruz Ángeles http://orcid.org/0000-0001-6352-4483

Resumen

Los rotores moleculares son una subclasificación de las máquinas moleculares y son fundamentales para el desarrollo de tecnologías innovadoras en diversos campos. Este artículo explora exclusivamente los rotores moleculares basados en hemitioindigo (HTI) impulsados por luz, sus variedades, rutas sintéticas, mecanismo de fotoisomerización, y sus propiedades físicas, químicas y fotocrómicas. Para ello, se realizo un análisis de carácter exploratorio, del cual se concluyo que, una de las propiedades que les otorga a estos rotores ventaja sobre otras estructuras es su rotación unidireccional extremadamente rápida al ser irradiados con luz visible, además que sus múltiples perspectivas de aplicación y desarrollo derivadas del aprovechamiento de sus propiedades hacen de estos compuestos una interesante propuesta de innovación en investigación científica.

Article Details

Como citar
GARCÍA SÁNCHEZ, José Juan; CRUZ ÁNGELES, Samanta Estefania. Rotores Moleculares Basados en Hemitioindigo Impulsados por Luz: Aspectos Destacados. CIENCIA ergo-sum, [S.l.], v. 31, mar. 2023. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/16644>. Fecha de acceso: 30 mayo 2024 doi: https://doi.org/10.30878/ces.v31n0a18.
Sección
Ciencias exactas y aplicadas

Citas

Aprahamian, I. (2020). The future of molecular machines. ACS Central Science, 6(3), 347-358. https://doi.org/10.1021/acscentsci.0c00064

Astumian, R. D., Mukherjee, S., & Warshel, A. (2016). The physics and physical chemistry of molecular machines. ChemPhysChem, 17(12), 1719-1741. https://doi.org/10.1002/cphc.201600184

Balzani, V., Credi, A., & Venturi, M. (2003). Molecular Devices and Machines – A Journey into the Nano World. Wiley. https://doi.org/10.1002/3527601600

Balzani, V., V., Credi, A., Raymo, F. M., & Stoddart, J. F. (2000). Artificial molecular machines. Angewandte Chemie International Edition, 39(19), 3348-3391. https://doi.org/10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X

Baroncini, M., Casimiro, L., de Vet, C., Groppi, J., Silvi, S., & Credi, A. (2018). Making and operating molecular machines: a multidisciplinary challenge. ChemistryOpen, 7(2), 169-179. https://doi.org/10.1002/open.201700181

Baroncini, M., Silvi, S., & Credi, A. (2019). Photo- and redox-Driven artificial molecular motors. Chemical Reviews, 120(1), 200-268. https://doi.org/10.1021/acs.chemrev.9b00291

Browne, W. R., & Feringa, B. L. (2006). Making molecular machines work. Nature nanotechnology, 1(1), 25-35. https://doi.org/10.1038/nnano.2006.45

Cameron, D., & Eisler, S. (2018). Photoswitchable double bonds: Synthetic strategies for tunability and versatility. Journal of Physical Organic Chemistry, 31(10), e3858. https://doi.org/10.1002/poc.3858

Ceroni, P., Credi, A., & Venturi, M. (2014). Light to investigate (read) and operate (write) molecular devices and machines. Chemical Society Reviews, 43(12), 4068-4083. https://doi.org/10.1039/c3cs60400d

Chen, J., Leung, F. K.-C., Stuart, M. C. A., Kajitani, T., Fukushima, T., van der Giessen, E., & Feringa, B. L. (2017). Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nature Chemistry, 10(2), 132-138. https://doi.org/10.1038/nchem.2887

Cnossen, A., Browne, W. R., & Feringa, B. L. (2014). Unidirectional light-driven molecular motors based on overcrowded alkenes. Molecular Machines and Motors, 354, 139-162. https://doi.org/10.1007/128_2013_512

Cordes, T., Schadendorf, T., Priewisch, B., Rück-Braun, K., & Zinth, W. (2008). The Hammett relationship and reactions in the excited electronic state: hemithioindigoZ/E-photoisomerization. The Journal of Physical Chemistry. A, 112(4), 581-588. https://doi.org/10.1021/jp077472l

Credi, A., Silvi, S., & Venturi, M. (2014a). Light-operated machines based on threaded molecular structures. Molecular Machines and Motors, 1-34. https://doi.org/10.1007/128_2013_509

Credi, A., Silvi, S., & Venturi, M. (2014b). Molecular machines and motors. Springer Publishing. https://doi.org/10.1007/978-3-319-08678-1

De Bo, G., Kuschel, S., Leigh, D. A., Lewandowski, B., Papmeyer, M., & Ward, J. W. (2014). Efficient Assembly of Threaded Molecular Machines for Sequence-Specific Synthesis. Journal of the American Chemical Society, 136(15), 5811-5814. https://doi.org/10.1021/ja5022415

Eggers, K., Fyles, T. M., & Montoya-Pelaez, P. J. (2001). Synthesis and characterization of photoswitchable lipids containing hemithioindigo chromophores. The Journal of Organic Chemistry, 66(9), 2966-2977. https://doi.org/10.1021/jo0056848

Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T., & Nussbaumer, A. L. (2015). Artificial molecular machines. Chemical Reviews, 115(18), 10081-10206. https://doi.org/10.1021/acs.chemrev.5b00146

Feringa, B. L. (2017). The art of building small: from molecular switches to motors (Nobel lecture). Angewandte Chemie. International Edition, 56(37), 11060-11078. https://doi.org/10.1002/anie.201702979

Feringa, B. L., & Browne, W. R. (2011). Molecular switches. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527634408

García-López, V., Liu, D., & Tour, J. M. (2019). Light-activated organic molecular motors and their applications. Chemical Reviews, 120(1), 79-124. https://doi.org/10.1021/acs.chemrev.9b00221

Gerwien, A., Reinhardt, T., Mayer, P., & Dube, H. (2017). Synthesis of double-bond-substituted hemithioindigo photoswitches. Organic Letters, 20(1), 232-235. https://doi.org/10.1021/acs.orglett.7b03574

Gerwien, A., Mayer, P., & Dube, H. (2018a). Photon-only molecular motor with reverse temperature-dependent efficiency. Journal of the American Chemical Society, 140(48), 16442-16445. https://doi.org/10.1021/jacs.8b10660

Gerwien, A., Schildhauer, M., Thumser, S., Mayer, P., & Dube, H. (2018b). Direct evidence for hula twist and single-bond rotation photoproducts. Nature Communications, 9(1), 2510. https://doi.org/10.1038/s41467-018-04928-9

Gerwien, A., Mayer, P., & Dube, H. (2019). Green light powered molecular state motor enabling eight-shaped unidirectional rotation. Nature Communications, 10, 4449. https://doi.org/10.1038/s41467-019-12463-4

Groppi, J., Baroncini, M., Venturi, M., Silvi, S., & Credi, A. (2019). Design of photo-activated molecular machines: highlights from the past ten years. Chemical Communications, 55(84), 12595-12602. https://doi.org/10.1039/c9cc06516d

Guentner, M., Schildhauer, M., Thumser, S., Mayer, P., Stephenson, D., Mayer, P. J., & Dube, H. (2015). Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nature Communications, 6(1). https://doi.org/10.1038/ncomms9406

Hashidzume, A., Yamaguchi, H., & Harada, A. (2014). Cyclodextrin-Based Molecular Machines. Molecular Machines and Motors, 71-110. https://doi.org/10.1007/128_2014_547

Heard, A. W., & Goldup, S. M. (2020). Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Central Science, 6(2), 117-128. https://doi.org/10.1021/acscentsci.9b01185

Hoffmann, K., Guentner, M., Mayer, P., & Dube, H. (2019a). Symmetric and nonsymmetric bis-hemithioindigos – precise visible light controlled shape-shifters. Organic Chemistry Frontiers, 6(8), 1244-1252. https://doi.org/10.1039/c9qo00202b

Hoffmann, K., Mayer, P., & Dube, H. (2019b). A hemithioindigo molecular motor for metal surface attachment. Organic & Biomolecular Chemistry, 17(7), 1979-1983. https://doi.org/10.1039/c8ob02424c

Huber, L. A., Hoffmann, K., Thumser, S., Böcher, N., Mayer, P., & Dube, H. (2017). Direct observation of hemithioindigo-motor unidirectionality. Angewandte Chemie. International Edition, 56(46), 14536-14539. https://doi.org/10.1002/anie.201708178

Jia, S., Fong, W.-K., Graham, B., & Boyd, B. J. (2018). Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications. Chemistry of Materials, 30(9), 2873-2887. https://doi.org/10.1021/acs.chemmater.8b00357

Kandinska, M. I., Kitova, S. M., Videva, V. S., Stoyanov, S. S., Yordanova, S. B., Baluschev, S. B., Angelova, S. E., & Vasilev, A. A. (2019). Precious metal-free molecular machines for solar thermal energy storage. Beilstein Journal of Organic Chemistry, 15, 1096-1106. https://doi.org/10.3762/bjoc.15.106

Kassem, S., van Leeuwen, T., Lubbe, A. S., Wilson, M. R., Feringa, B. L., & Leigh, D. A. (2017). Artificial molecular motors. Chemical Society Reviews, 46(9), 2592-2621. https://doi.org/10.039/c7cs00245a

Kink, F., Collado, M. P., Wiedbrauk, S., Mayer, P., & Dube, H. (2017). Bistable photoswitching of hemithioindigo with green and red light: Entry point to advanced molecular digital information processing. Chemistry. A European Journal, 23(26), 6237-6243. https://doi.org/10.1002/chem.201700826

Kitzig, S., & Rück-Braun, K. (2017). Synthesis of hemithioindigo-based chromopeptides by using the Tmb auxiliary in native chemical ligation studies. Journal of Peptide Science, 23(7-8), 567-573. https://doi.org/10.1002/psc.3001

Kitzig, S., Thilemann, M., Cordes, T., & Rück-Braun, K. (2016). Light-switchable peptides with a hemithioindigo unit: Peptide design, photochromism, and optical spectroscopy. ChemPhysChem, 17(9), 1252-1263. https://doi.org/10.1002/cphc.201501050

Kottas, G. S., Clarke, L. I., Horinek, D., & Michl, J. (2005). Artificial Molecular Rotors. Chemical Reviews, 105(4), 1281-1376. https://doi.org/10.1021/cr0300993

Köttner, L., Schildhauer, M., Wiedbrauk, S., Mayer, P., & Dube, H. (2020). Oxidized hemithioindigo photoswitches—Influence of Oxidation State on (Photo)physical and Photochemical Properties. Chemistry. A European Journal, 26(47), 10712-10718. https://doi.org/10.1002/chem.202002176

Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A., & Feringa, B. L. (2002). Second Generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-Perfect photoequilibria and acceleration of the speed of rotation by structural modification. Journal of the American Chemical Society, 124(18), 5037-5051. https://doi.org/10.1021/ja012499i

Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N., & Feringa, B. L. (1999). Light-driven monodirectional molecular rotor. Nature, 401(6749), 152-155. https://doi.org/10.1038/43646

Kuimova, M. K., Yahioglu, G., Levitt, J. A., & Suhling, K. (2008). Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. Journal of the American Chemical Society, 130(21), 6672-6673. https://doi.org/10.1021/ja800570d

Liu, R. S. H. (2001). Photoisomerization by hula-twist: A fundamental supramolecular photochemical reaction. Accounts of Chemical Research, 34(7), 555-562. https://doi.org/10.1021/ar000165c

Liu, R. S. H., Yang, L.-Y., Hirata, C., Liu, J., & Ho, T.-I. (2006). Hula-Twist. A stereoselective and regioselective photoisomerization reaction mechanism. Journal of the Chinese Chemical Society, 53(1), 227-232. https://doi.org/10.1002/jccs.200600025

Maerz, B., Wiedbrauk, S., Oesterling, S., Samoylova, E., Nenov, A., Mayer, P., de Vivie-Riedle, R., Zinth, W., & Dube, H. (2014). Making fast photoswitches faster—Using hammett analysis to understand the limit of donor–Acceptor approaches for faster hemithioindigo photoswitches. Chemistry. A European Journal, 20(43), 13984-13992. https://doi.org/10.1002/chem.201403661

Mayer, B. J., Blinov, M. L., & Loew, L. M. (2009). Molecular machines or pleiomorphic ensembles: signaling complexes revisited. Journal of Biology, 8(9), 81. https://doi.org/10.1186/jbiol185

Nenov, A., Cordes, T., Herzog, T. T., Zinth, W., & de Vivie-Riedle, R. (2010). Molecular driving forces for Z/E isomerization mediated by heteroatoms: The example hemithioindigo. The Journal of Physical Chemistry A, 114(50), 13016-13030. https://doi.org/10.1021/jp107899g

Nie, H., Self, J. L., Kuenstler, A. S., Hayward, R. C., & Read de Alaniz, J. (2019). Multiaddressable photochromic architectures: Frogo molecules to materials. Advanced Optical Materials, 7(16), 1900224. https://doi.org/10.1002/adom.201900224

Petermayer, C., & Dube, H. (2018). Indigoid photoswitches: Visible light responsive molecular tools. Accounts of Chemical Research, 51(5), 1153-1163. https://doi.org/10.1021/acs.accounts.7b00638

Pianowski, Z. L. (2019). Recent implementations of molecular photoswitches into smart materials and biological systems. Chemistry. A European Journal, 25(20), 5128-5144. https://doi.org/10.1002/chem.201805814
Ramamurthy, I. Y. (2012). Supramolecular photochemistry: Controlling photochemical processes.  John Wiley & Sons, Inc. https://doi.org/10.1002/9781118095300

Regner, N., Herzog, T. T., Haiser, K., Hoppmann, C., Beyermann, M., Sauermann, J., Engelhard, M., Cordes, T., Rück-Braun, K., & Zinth, W. (2012). Light-switchable hemithioindigo–Hemistilbene-containing peptides: Ultrafast spectroscopy of the Z → E isomerization of the chromophore and the structural dynamics of the peptide moiety. Journal of Physical Chemistry B, 116 Beilstein Journal of Organic Chemistry, 16, 125-134. https://doi.org/10.3762/bjoc.16.14

Sailer, A., Meiring, J. C. M., Heise, C., Pettersson, L. N., Akhmanova, A., Thorn-Seshold, J., & Thorn-Seshold, O. (2021). Pyrrole hemithioindigo antimitotics with near-Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single-Cell Precision**. Angewandte. Chemie International Edition, 60(44), 23695-23704. https://doi.org/10.1002/anie.202104794

Sauvage, J. P., & Gaspard, P. (2010). 21 Fluctuation Theorem, Nonequilibrium Work, and Molecular Machines. In J. P. Sauvage & P. Gaspard, From Non-Covalent Assemblies to Molecular Machines (pp. 307-311). Wiley-VCH Verlag & Co. KgaA.

Schnepp, Z. (2013). Bioinspiration and Biomimicry in Chemistry. Reverse-Engineering Nature. Edited by Gerhard F. Swiegers. Angewandte Chemie. International Edition, 52(48), 12484. https://doi.org/10.1002/anie.201306735

Wiedbrauk, S., & Dube, H. (2015). Hemithioindigo-an emerging photoswitch. Tetrahedron Letters, 56(29), 4266-4274. https://doi.org/10.1016/j.tetlet.2015.05.022

Wiedbrauk, S., Maerz, B., Samoylova, E., Mayer, P., Zinth, W., & Dube, H. (2017). Ingredients to TICT formation in donor substituted hemithioindigo. Journal of Physical Chemistry Letters, 8(7), 1585-1592. https://doi.org/10.1021/acs.jpclett.7b00371

Wiedbrauk, S., Maerz, B., Samoylova, E., Reiner, A., Trommer, F., Mayer, P., Zinth, W., & Dube, H. (2016). Twisted hemithioindigo photoswitches: Solvent Polarity Determines the Type of Light-Induced Rotations. Journal of the American Chemical Society, 138(37), 12219-12227. https://doi.org/10.1021/jacs.6b05981

Wilcken, R., Schildhauer, M., Rott, F., Huber, L. A., Guentner, M., Thumser, S., Hoffmann, K., Oesterling, S., de Vivie-Riedle, R., Riedle, E., & Dube, H. (2018). Complete Mechanism of Hemithioindigo Motor Rotation. Journal of the American Chemical Society, 140(15), 5311-5318. https://doi.org/10.1021/jacs.8b02349

Wilcken, R., Huber, L., Grill, K., Guentner, M., Schildhauer, M., Thumser, S., Riedle, E., & Dube, H. (2020). Tuning the ground and excited state dynamics of hemithioindigo molecular motors by changing substituents. Chemistry. A European Journal, 26(59), 13507-13512. https://doi.org/10.1002/chem.202003096

Zhang, Q., Qu, D.-H., Tian, H., & Feringa, B. L. (2020). Bottom-Up: can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials? Matter, 3(2), 355-370. https://doi.org/10.1016/j.matt.2020.05.014

Zweig, J. E., & Newhouse, T. R. (2017). Isomer-specific hydrogen bonding as a design principle for bidirectionally quantitative and redshifted hemithioindigo photoswitches. Journal of the American Chemical Society, 139(32), 10956-10959. https://doi.org/10.1021/jacs.7b04448

Zweig, J. E., Ko, T. A., Huang, J., & Newhouse, T. R. (2019). Effects of π-extension on pyrrole hemithioindigo photoswitches. Tetrahedron, 75(34), 130466. https://doi.org/10.1016/j.tet.2019.130466