Rotores Moleculares Basados en Hemitioindigo Impulsados por Luz: Aspectos Destacados Aspectos Destacados
Main Article Content
Resumen
Los rotores moleculares son una subclasificación de las máquinas moleculares y son fundamentales para el desarrollo de tecnologías innovadoras en diversos campos. Este artículo explora exclusivamente los rotores moleculares basados en hemitioindigo (HTI) impulsados por luz, sus variedades, rutas sintéticas, mecanismo de fotoisomerización, y sus propiedades físicas, químicas y fotocrómicas. Para ello, se realizo un análisis de carácter exploratorio, del cual se concluyo que, una de las propiedades que les otorga a estos rotores ventaja sobre otras estructuras es su rotación unidireccional extremadamente rápida al ser irradiados con luz visible, además que sus múltiples perspectivas de aplicación y desarrollo derivadas del aprovechamiento de sus propiedades hacen de estos compuestos una interesante propuesta de innovación en investigación científica.
Article Details

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Citas
Astumian, R. D., Mukherjee, S., & Warshel, A. (2016). The Physics and Physical Chemistry of Molecular Machines. ChemPhysChem, 17(12), 1719-1741. https://doi.org/10.1002/cphc.201600184
Balzani, V., Credi, A., & Venturi, M. (2003). Molecular Devices and Machines. Wiley. https://doi.org/10.1002/3527601600
Balzani, V., V, Credi, A., Raymo, F. M., & Stoddart, J. F. (2000). Artificial Molecular Machines. Angewandte Chemie (International ed. in English), 39(19), 3348–3391. https://doi.org/10.1002/1521-3773(20001002)39:19<3348::aid-anie3348>3.0.co;2-x
Baroncini, M., Casimiro, L., de Vet, C., Groppi, J., Silvi, S., & Credi, A. (2018). Making and Operating Molecular Machines: A Multidisciplinary Challenge. ChemistryOpen, 7(2), 169-179. https://doi.org/10.1002/open.201700181
Baroncini, M., Silvi, S., & Credi, A. (2019). Photo- and Redox-Driven Artificial Molecular Motors. Chemical Reviews, 120(1), 200-268. https://doi.org/10.1021/acs.chemrev.9b00291
Browne, W. R., & Feringa, B. L. (2006). Making molecular machines work. Nature nanotechnology, 1(1), 25–35. https://doi.org/10.1038/nnano.2006.45
Cameron, D., & Eisler, S. (2018). Photoswitchable double bonds: Synthetic strategies for tunability and versatility. Journal of Physical Organic Chemistry, 31(10), e3858. https://doi.org/10.1002/poc.3858
Ceroni, P., Credi, A., & Venturi, M. (2014). Light to investigate (read) and operate (write) molecular devices and machines. Chem. Soc. Rev., 43(12), 4068-4083. https://doi.org/10.1039/c3cs60400d
Chen, J., Leung, F. K.-C., Stuart, M. C. A., Kajitani, T., Fukushima, T., van der Giessen, E., & Feringa, B. L. (2017). Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nature Chemistry, 10(2), 132-138. https://doi.org/10.1038/nchem.2887
Cnossen, A., Browne, W. R., & Feringa, B. L. (2014). Unidirectional Light-Driven Molecular Motors Based on Overcrowded Alkenes. Molecular Machines and Motors, 139-162. https://doi.org/10.1007/128_2013_512
Cordes, T., Schadendorf, T., Priewisch, B., Rück-Braun, K., & Zinth, W. (2008). The Hammett Relationship and Reactions in the Excited Electronic State: HemithioindigoZ/E-Photoisomerization. The Journal of Physical Chemistry A, 112(4), 581-588. https://doi.org/10.1021/jp077472l
Credi, A., Silvi, S., & Venturi, M. (2014). Light-Operated Machines Based on Threaded Molecular Structures. Molecular Machines and Motors, 1-34. https://doi.org/10.1007/128_2013_509
Credi, A., Silvi, S., & Venturi, M. (2014). Molecular Machines and Motors. Springer Publishing. https://doi.org/10.1007/978-3-319-08678-1
De Bo, G., Kuschel, S., Leigh, D. A., Lewandowski, B., Papmeyer, M., & Ward, J. W. (2014). Efficient Assembly of Threaded Molecular Machines for Sequence-Specific Synthesis. Journal of the American Chemical Society, 136(15), 5811-5814. https://doi.org/10.1021/ja5022415
Eggers, K., Fyles, T. M., & Montoya-Pelaez, P. J. (2001). Synthesis and Characterization of Photoswitchable Lipids Containing Hemithioindigo Chromophores. The Journal of Organic Chemistry, 66(9), 2966-2977. https://doi.org/10.1021/jo0056848
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T., & Nussbaumer, A. L. (2015). Artificial Molecular Machines. Chemical Reviews, 115(18), 10081-10206. https://doi.org/10.1021/acs.chemrev.5b00146
Feringa, B. L. (2017). The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angewandte Chemie International Edition, 56(37), 11060-11078. https://doi.org/10.1002/anie.201702979
Feringa, B. L., & Browne, W. R. (2011). Molecular switches (2.a ed., Vol. 2) [Libro electrónico]. Wiley. https://doi.org/10.1002/9783527634408
García-López, V., Liu, D., & Tour, J. M. (2019). Light-Activated Organic Molecular Motors and Their Applications. Chemical Reviews, 120(1), 79-124. https://doi.org/10.1021/acs.chemrev.9b00221
Gerwien, A., Mayer, P. & Dube, H. (2019). Green light powered molecular state motor enabling eight-shaped unidirectional rotation. Nat Commun 10, 4449 https://doi.org/10.1038/s41467-019-12463-4
Gerwien, A., Mayer, P., & Dube, H. (2018). Photon-Only Molecular Motor with Reverse Temperature-Dependent Efficiency. Journal of the American Chemical Society, 140(48), 16442-16445. https://doi.org/10.1021/jacs.8b10660
Gerwien, A., Reinhardt, T., Mayer, P., & Dube, H. (2017). Synthesis of Double-Bond-Substituted Hemithioindigo Photoswitches. Organic Letters, 20(1), 232-235. https://doi.org/10.1021/acs.orglett.7b03574
Gerwien, A., Schildhauer, M., Thumser, S., Mayer, P., & Dube, H. (2018). Direct evidence for hula twist and single-bond rotation photoproducts. Nature communications, 9(1), 2510. https://doi.org/10.1038/s41467-018-04928-9
Groppi, J., Baroncini, M., Venturi, M., Silvi, S., & Credi, A. (2019). Design of photo-activated molecular machines: highlights from the past ten years. Chemical Communications, 55(84), 12595-12602. https://doi.org/10.1039/c9cc06516d
Guentner, M., Schildhauer, M., Thumser, S., Mayer, P., Stephenson, D., Mayer, P. J., & Dube, H. (2015). Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nature Communications, 6(1). https://doi.org/10.1038/ncomms9406
Hashidzume, A., Yamaguchi, H., & Harada, A. (2014). Cyclodextrin-Based Molecular Machines. Molecular Machines and Motors, 71-110. https://doi.org/10.1007/128_2014_547
Heard, A. W., & Goldup, S. M. (2020). Simplicity in the Design, Operation, and Applications of Mechanically Interlocked Molecular Machines. ACS Central Science, 6(2), 117-128. https://doi.org/10.1021/acscentsci.9b01185
Hoffmann, K., Guentner, M., Mayer, P., & Dube, H. (2019). Symmetric and nonsymmetric bis-hemithioindigos – precise visible light controlled shape-shifters. Organic Chemistry Frontiers, 6(8), 1244-1252. https://doi.org/10.1039/c9qo00202b
Hoffmann, K., Mayer, P., & Dube, H. (2019). A hemithioindigo molecular motor for metal surface attachment. Organic & Biomolecular Chemistry, 17(7), 1979-1983. https://doi.org/10.1039/c8ob02424c
Huber, L. A., Hoffmann, K., Thumser, S., Böcher, N., Mayer, P., & Dube, H. (2017). Direct Observation of Hemithioindigo-Motor Unidirectionality. Angewandte Chemie International Edition, 56(46), 14536-14539. https://doi.org/10.1002/anie.201708178
Jia, S., Fong, W.-K., Graham, B., & Boyd, B. J. (2018). Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications. Chemistry of Materials, 30(9), 2873-2887. https://doi.org/10.1021/acs.chemmater.8b00357
Kandinska, M. I., Kitova, S. M., Videva, V. S., Stoyanov, S. S., Yordanova, S. B., Baluschev, S. B., Angelova, S. E., & Vasilev, A. A. (2019). Precious metal-free molecular machines for solar thermal energy storage. Beilstein Journal of Organic Chemistry, 15, 1096-1106. https://doi.org/10.3762/bjoc.15.106
Kassem, S., van Leeuwen, T., Lubbe, A. S., Wilson, M. R., Feringa, B. L., & Leigh, D. A. (2017). Artificial molecular motors. Chemical Society Reviews, 46(9), 2592-2621. https://doi.org/10.1039/c7cs00245a
Kink, F., Collado, M. P., Wiedbrauk, S., Mayer, P., & Dube, H. (2017). Bistable Photoswitching of Hemithioindigo with Green and Red Light: Entry Point to Advanced Molecular Digital Information Processing. Chemistry - A European Journal, 23(26), 6237-6243. https://doi.org/10.1002/chem.201700826
Kitzig, S., & Rück-Braun, K. (2017). Synthesis of hemithioindigo-based chromopeptides by using the Tmb auxiliary in native chemical ligation studies. Journal of Peptide Science, 23(7-8), 567-573. https://doi.org/10.1002/psc.3001
Kitzig, S., Thilemann, M., Cordes, T., & Rück-Braun, K. (2016). Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy. ChemPhysChem, 17(9), 1252-1263. https://doi.org/10.1002/cphc.201501050
Kottas, G. S., Clarke, L. I., Horinek, D., & Michl, J. (2005). Artificial Molecular Rotors. Chemical Reviews, 105(4), 1281-1376. https://doi.org/10.1021/cr0300993
Köttner, L., Schildhauer, M., Wiedbrauk, S., Mayer, P., & Dube, H. (2020). Oxidized Hemithioindigo Photoswitches—Influence of Oxidation State on (Photo)physical and Photochemical Properties. Chemistry – A European Journal, 26(47), 10712-10718. https://doi.org/10.1002/chem.202002176
Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A., & Feringa, B. L. (2002). Second Generation Light-Driven Molecular Motors. Unidirectional Rotation Controlled by a Single Stereogenic Center with Near-Perfect Photoequilibria and Acceleration of the Speed of Rotation by Structural Modification. Journal of the American Chemical Society, 124(18), 5037-5051. https://doi.org/10.1021/ja012499i
Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N., & Feringa, B. L. (1999). Light-driven monodirectional molecular rotor. Nature, 401(6749), 152-155. https://doi.org/10.1038/43646
Kuimova, M. K., Yahioglu, G., Levitt, J. A., & Suhling, K. (2008). Molecular Rotor Measures Viscosity of Live Cells via Fluorescence Lifetime Imaging. Journal of the American Chemical Society, 130(21), 6672-6673. https://doi.org/10.1021/ja800570d
Liu, R. S. H. (2001). Photoisomerization by Hula-Twist: A Fundamental Supramolecular Photochemical Reaction. Accounts of Chemical Research, 34(7), 555-562. https://doi.org/10.1021/ar000165c
Liu, R. S. H., Yang, L.-Y., Hirata, C., Liu, J., & Ho, T.-I. (2006). Hula-Twist. A Stereoselective and Regioselective Photoisomerization Reaction Mechanism. Journal of the Chinese Chemical Society, 53(1), 227-232. https://doi.org/10.1002/jccs.200600025
Maerz, B., Wiedbrauk, S., Oesterling, S., Samoylova, E., Nenov, A., Mayer, P., de Vivie‐Riedle, R., Zinth, W., & Dube, H. (2014). Making Fast Photoswitches Faster—Using Hammett Analysis to Understand the Limit of Donor–Acceptor Approaches for Faster Hemithioindigo Photoswitches. Chemistry – A European Journal, 20(43), 13984-13992. https://doi.org/10.1002/chem.201403661
Mayer, B. J., Blinov, M. L., & Loew, L. M. (2009). Molecular machines or pleiomorphic ensembles: signaling complexes revisited. Journal of Biology, 8(9), 81. https://doi.org/10.1186/jbiol185
Nenov, A., Cordes, T., Herzog, T. T., Zinth, W., & de Vivie-Riedle, R. (2010). Molecular Driving Forces for Z/E Isomerization Mediated by Heteroatoms: The Example Hemithioindigo. The Journal of Physical Chemistry A, 114(50), 13016-13030. https://doi.org/10.1021/jp107899g
Nie, H., Self, J. L., Kuenstler, A. S., Hayward, R. C., & Read de Alaniz, J. (2019). Multiaddressable Photochromic Architectures: From Molecules to Materials. Advanced Optical Materials, 7(16), 1900224. https://doi.org/10.1002/adom.201900224
Petermayer, C., & Dube, H. (2018). Indigoid Photoswitches: Visible Light Responsive Molecular Tools. Accounts of Chemical Research, 51(5), 1153–1163. https://doi.org/10.1021/acs.accounts.7b00638
Pianowski, Z. L. (2019). Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chemistry – A European Journal, 25(20), 5128-5144. https://doi.org/10.1002/chem.201805814
Ramamurthy, & Inoue, Y. (2012). Supramolecular Photochemistry: Controlling Photochemical Processes (English Edition) (1.a ed.) [Libro electrónico]. Wiley. https://doi.org/10.1002/9781118095300
Regner, N., Herzog, T. T., Haiser, K., Hoppmann, C., Beyermann, M., Sauermann, J., Engelhard, M., Cordes, T., Rück-Braun, K., & Zinth, W. (2012). Light-Switchable Hemithioindigo–Hemistilbene-Containing Peptides: Ultrafast Spectroscopy of the Z → E Isomerization of the Chromophore and the Structural Dynamics of the Peptide Moiety. The Journal of Physical Chemistry B, 116(14), 4181-4191. https://doi.org/10.1021/jp300982a
Sailer, A., Ermer, F., Kraus, Y., Bingham, R., Lutter, F. H., Ahlfeld, J., & Thorn-Seshold, O. (2020). Potent hemithioindigo-based antimitotics photocontrol the microtubule cytoskeleton in cellulo. Beilstein Journal of Organic Chemistry, 16, 125-134. https://doi.org/10.3762/bjoc.16.14
Sailer, A., Meiring, J. C. M., Heise, C., Pettersson, L. N., Akhmanova, A., Thorn‐Seshold, J., & Thorn‐Seshold, O. (2021). Pyrrole Hemithioindigo Antimitotics with Near‐Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single‐Cell Precision**. Angewandte Chemie International Edition, 60(44), 23695–23704. https://doi.org/10.1002/anie.202104794
Sauvage, J., & Gaspard, P. (2010). 21 Fluctuation Theorem, Nonequilibrium Work, and Molecular Machines. En From Non-Covalent Assemblies to Molecular Machines (Illustrated ed., pp. 307-311). Wiley-Vch.
Schnepp, Z. (2013). Bioinspiration and Biomimicry in Chemistry. Reverse-Engineering Nature. Edited by Gerhard F. Swiegers. Angewandte Chemie International Edition, 52(48), 12484. https://doi.org/10.1002/anie.201306735
Wiedbrauk, S., & Dube, H. (2015). Hemithioindigo-an emerging photoswitch. Tetrahedron Letters, 56(29), 4266-4274. https://doi.org/10.1016/j.tetlet.2015.05.022
Wiedbrauk, S., Maerz, B., Samoylova, E., Mayer, P., Zinth, W., & Dube, H. (2017). Ingredients to TICT Formation in Donor Substituted Hemithioindigo. The Journal of Physical Chemistry Letters, 8(7), 1585-1592. https://doi.org/10.1021/acs.jpclett.7b00371
Wiedbrauk, S., Maerz, B., Samoylova, E., Reiner, A., Trommer, F., Mayer, P., Zinth, W., & Dube, H. (2016). Twisted Hemithioindigo Photoswitches: Solvent Polarity Determines the Type of Light-Induced Rotations. Journal of the American Chemical Society, 138(37), 12219-12227. https://doi.org/10.1021/jacs.6b05981
Wilcken, R., Huber, L., Grill, K., Guentner, M., Schildhauer, M., Thumser, S., Riedle, E., & Dube, H. (2020). Tuning the Ground and Excited State Dynamics of Hemithioindigo Molecular Motors by Changing Substituents. Chemistry – A European Journal, 26(59), 13507-13512. https://doi.org/10.1002/chem.202003096
Wilcken, R., Schildhauer, M., Rott, F., Huber, L. A., Guentner, M., Thumser, S., Hoffmann, K., Oesterling, S., de Vivie-Riedle, R., Riedle, E., & Dube, H. (2018). Complete Mechanism of Hemithioindigo Motor Rotation. Journal of the American Chemical Society, 140(15), 5311-5318. https://doi.org/10.1021/jacs.8b02349
Zhang, Q., Qu, D.-H., Tian, H., & Feringa, B. L. (2020). Bottom-Up: Can Supramolecular Tools Deliver Responsiveness from Molecular Motors to Macroscopic Materials? Matter, 3(2), 355-370. https://doi.org/10.1016/j.matt.2020.05.014
Zweig, J. E., & Newhouse, T. R. (2017). Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches. Journal of the American Chemical Society, 139(32), 10956-10959. https://doi.org/10.1021/jacs.7b04448
Zweig, J. E., Ko, T. A., Huang, J., & Newhouse, T. R. (2019). Effects of π-extension on pyrrole hemithioindigo photoswitches. Tetrahedron, 75(34), 130466. https://doi.org/10.1016/j.tet.2019.130466
CC BY-NC-ND