Calentamiento de nanopartículas de oro inducido por excitación fotónica y multifotónica

Main Article Content

Flonth Viena Gutierrez-Cruz Alejandra Ancira-Cortez Miguel Ángel Camacho-López Keila Isaac-Olivé Nallely Jiménez-Mancilla

Resumen

Se evaluó la temperatura generada por nanopartículas de oro (AuNPs) al ser irradiadas con luz láser para su utilidad en terapia fototérmica plasmónica fotónica o multifotónica. Las AuNPs fueron sintetizadas por el método de Turkevitch y caracterizadas por técnicas espectroscópicas. La irradiación se realizó con un láser Nd:YAG, a longitudes de onda de 532 y 1064 nm, frecuencias de repetición 5, 10 y 15 Hz, durante 210 s. La temperatura fue medida con un termopar tipo K. Las AuNPs mostraron tamaños de 20.7+0.2 nm, forma esférica y un máximo de absorción UV-Vis en 520.16+0.93 nm. La irradiación a 1064 nm mostró mayor incremento de temperatura en 3.4, 1.9, 1.2 veces más que a 532 nm a las respectivas frecuencias.

Article Details

Como citar
GUTIERREZ-CRUZ, Flonth Viena et al. Calentamiento de nanopartículas de oro inducido por excitación fotónica y multifotónica. CIENCIA ergo-sum, [S.l.], v. 30, n. 2, ago. 2022. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/15908>. Fecha de acceso: 02 oct. 2022
Sección
Ciencias de la salud humana

Citas

Aioub, M., Austin, L. A., & El-Sayed, M. A. (2018). Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy. In Inorganic Frameworks as Smart Nanomedicines. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813661-4.00002-X
Ali, M. R. K., Wu, Y., & El-Sayed, M. A. (2019). Gold-Nanoparticle-Assisted Plasmonic Photothermal Therapy Advances Toward Clinical Application [Review-article]. Journal of Physical Chemistry C, 123(25), 15375–15393. https://doi.org/10.1021/acs.jpcc.9b01961
Golovynskyi, S., Golovynska, I., Stepanova, L. I., Datsenko, O. I., Liu, L., Qu, J., & Ohulchanskyy, T. Y. (2018). Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications. Journal of Biophotonics, 11(12), e201800141. https://doi.org/10.1002/jbio.201800141
Huang, X., & El-Sayed, M. A. (2010). Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. In Journal of Advanced Research. https://doi.org/10.1016/j.jare.2010.02.002
Huh, J. H., Lee, J., & Lee, S. (2018). Comparative Study of Plasmonic Resonances between the Roundest and Randomly Faceted Au Nanoparticles-on-Mirror Cavities. ACS Photonics, 5(2), 413–421. https://doi.org/10.1021/acsphotonics.7b00856
Kasten, B. B., Liu, T., Nedrow-Byers, J. R., Benny, P. D., & Berkman, C. E. (2013). Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioorganic & Medicinal Chemistry Letters, 23(2), 565–568. https://doi.org/10.1016/j.bmcl.2012.11.015
Liu, Yang, Crawford, B. M., & Vo-Dinh, T. (2018). Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy, 10(13), 1175–1188. https://doi.org/10.2217/imt-2018-0029
Liu, Yijing, Bhattarai, P., Dai, Z., & Chen, X. (2019). Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 48(7), 2053–2108. https://doi.org/10.1039/C8CS00618K
Luna-Gutiérrez, M., Ferro-Flores, G., Ocampo-García, B., Jiménez-Mancilla, N., Morales-Avila, E., De Leõn-Rodríguez, L., & Isaac-Olivé, K. (2012). 177Lu-labeled monomeric, dimeric and multimeric RGD peptides for the therapy of tumors expressing α(ν)β(3) integrins. Journal of Labelled Compounds and Radiopharmaceuticals, 55(4), 140–148. https://doi.org/10.1002/jlcr.2910
Ma, Y. C., Zhu, Y. H., Tang, X. F., Hang, L. F., Jiang, W., Li, M., Khan, M. I., You, Y. Z., & Wang, Y. C. (2019). Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy. Biomaterials Science, 7(7), 2740–2748. https://doi.org/10.1039/c9bm00333a
Panikkanvalappil, S. R., Hooshmand, N., & El-Sayed, M. A. (2017). Intracellular Assembly of Nuclear-Targeted Gold Nanosphere Enables Selective Plasmonic Photothermal Therapy of Cancer by Shifting Their Absorption Wavelength toward Near-Infrared Region. Bioconjugate Chemistry, 28(9), 2452–2460. https://doi.org/10.1021/acs.bioconjchem.7b00427
Riley, R. S., & Day, E. S. (2017). Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4), e1449. https://doi.org/10.1002/wnan.1449
RP Photonics Consulting GmbH. (2019). RP Photonics Encyclopedia - multiphoton absorption, two-photon, three-photon absorption, bandgap energy, laser material processing.
Sivasubramanian, M., Chuang, Y. C., & Lo, L. W. (2019). Evolution of nanoparticle-mediated photodynamic therapy: From superficial to deep-seated cancers. Molecules, 24(3). https://doi.org/10.3390/molecules24030520
Smith, A. M., Mancini, M. C., & Nie, S. (2009). Second window for in vivo imaging. Nature Nanotechnology, 4(11), 710–711. https://doi.org/10.1038/nnano.2009.326
Szepes, L., & Tarczay, G. (1999). Photoelectron Spectrometers. Encyclopedia of Spectroscopy and Spectrometry, 1822–1830. https://doi.org/10.1006/RWSP.2000.0235
Zhang, D., Wu, T., Qin, X., Qiao, Q., Shang, L., Song, Q., Yang, C., & Zhang, Z. (2019). Intracellularly Generated Immunological Gold Nanoparticles for Combinatorial Photothermal Therapy and Immunotherapy against Tumor. Nano Letters, 19(9), 6635–6646. https://doi.org/10.1021/acs.nanolett.9b02903