Influencia de la arena en la resistencia mecánica del mortero empleando diferentes marcas de cemento
Main Article Content
Resumen
Se evalúa el comportamiento mecánico de pastas de cemento empleando Cemento Portland Tipo II 30R de cinco marcas con el objetivo de identificar la relación óptima de los cementos con diferentes tipos de arena para elaborar morteros. Se conformaron cinco series de pastas y morteros con cada marca de cemento variando el tipo de arena por serie. La resistencia de las pastas de cemento es diferente en cada marca. Una misma marca de cemento tendrá un comportamiento distinto en función de la arena que se utilice. La arena influye en la resistencia a compresión. Para mejorar el desempeño mecánico del mortero, se analizan los materiales componentes. Un diseño de mezcla específico optimiza el mortero en la construcción.
Article Details
Como citar
MUCIÑO-VÉLEZ, Alberto et al.
Influencia de la arena en la resistencia mecánica del mortero empleando diferentes marcas de cemento.
CIENCIA ergo-sum, [S.l.], v. 29, n. 1, abr. 2022.
ISSN 2395-8782.
Disponible en: <https://cienciaergosum.uaemex.mx/article/view/15286>. Fecha de acceso: 20 mayo 2022
doi: https://doi.org/10.30878/ces.v29n1a9.
Sección
Espacio del divulgador

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Citas
Amenta, M., Karatasios, I., Maravelaki-Kalaitzaki,P., & Kilikoglou, V. (2017). The role of aggregate characteristics on the performance optimization of high hydraulicity restoration mortars. Construction and Building Materials, 153, 527-534, https://doi.org/10.1016/j.conbuildmat.2017.07.134
Alexander, M. G., & Mindess, S. (2005). Aggregates in concrete. New York: Taylor & Francis.
Apostolopoulou, M., Armaghani, D. J., Bakolas, S., Douvika, M. G., Moropoulou, A., Asteris, P. G. (2019). Compressive strength of natural hydraulic lime mortars using soft computing techniques. Procedia Structural Integrity, 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122
ASTM (2011). ASTM C-019 Standard Test Method for Compressive Strength of Hydraulic Cement Mortar. ASTM International, West Conshohocken. Retrieved from www.astm.org
ASTM (2018). ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates, ASTM International.West Conshohocken. Retrieved from www.astm.org
Diamond, S. (2004). The microstructure of cement paste and concrete-a visual primer. Cement and concrete composites, 26, 919-933. https://doi.org/10.1016/j.cemconcomp.2004.02.028
Elsharief, A., Cohen, M., & Olek, M. (2003). Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cement and Concrete Research, 33, 1837-1845. https://doi.org/10.1016/S0008-8846(03)00205-9
Gamboa, L. M. (2019). ¿Cómo elegir un buen material pétreo para la elaboración de concretos hidráulicos hechos en obra? RUA, 11(21), 58-66. Disponible en https://rua.uv.mx/index.php/rua/article/view/66/51
Giraldo, M. A. y Tobón, J. I. (2006). Evolución mineralógica del cemento portland durante el proceso de hidratación. Dyna, 73(148), 69-81. Disponible en https://www.redalyc.org/articulo.oa?id=496/49614807
Gupta, L. K., & Vyas, A. K., (2018). Impact on mechanical properties of cement sand mortar containing waste granite powder. Construction and Building Materials, 191, 155-164. https://doi.org/10.1016/j.conbuildmat.2018.09.203
Guzmán, B. B., Cuevas, S. A., Barragán, T. R. & Sánchez, C. M. (2017). Incidencia de los componentes en la resistencia del mortero utilizado en Chilpancingo Guerrero. Innova Ingeniería. Publicaciones Técnicas de Investigación, 1(2). Disponible en https://innovaingenieria.uagro.mx/innova/index.php/innova/article/view/8/8
Haach, V. G., Vasconcelos, G., & Lourenço, P. B. (2011). Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25, 2980-2987. https://doi.org/10.1016/j.conbuildmat.2010.11.011
Juilland, P., Gallucci, E., Flatt, R., & Scrivener, K. (2010). Dissolution theory applied to the induction period in alite hydration. Cement and Concrete Research, 40, 831-844. https://doi.org/10.1016/j.cemconres.2010.01.012
Kabeer, K. I. S. A., & Vyas, A. K. (2018). Utilization of marble powder as fine aggregate in mortar mixes. Construction and Building Materials, 165, 321-332. https://doi.org/10.1016/j.conbuildmat.2018.01.061
Ke, Y., Ortola, S., Beaucour, A. L., & Dumontet, H. (2010). Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the interfacial transition zone (ITZ). Cement and Concrete Research, 40, 1590-1600. https://doi.org/10.1016/j.cemconres.2010.07.001
Kockal, N. U. (2016). Investigation about the effect of different fine aggregates on physical, mechanical and thermal properties of mortars. Construction and Building Materials, 124, 816-825. https://doi.org/10.1016/j.conbuildmat.2016.08.008.
Mahdinia, S., Eskandari-Naddaf, H., & Shadnia, R. (2019). Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method. Construction and Building Materials, 198, 27-4. https://doi.org/10.1016/j.conbuildmat.2018.11.265.
Mehta, K., & Monteiro, P. (2006). Concrete: Microstructure, properties, and materials (3rd ed.) New York: McGraw-Hill.
Monteiro, P. (1985). Microstructure of concrete and its influence on the mechanical properties. University of California Berkeley: California.
Neville, A. M., & Brooks, J. J. (2010). Concrete technology (2nd ed.). Essex, Prentice Hall.
Odler, I., (1998). Setting and hardening of portland cement. In P. C. Hewlett, Lea’s Chemistry of Cement and Concrete (4th ed.) Oxford: Butterworth-Heinemann.
ONNCCE (Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.). (2010). NMX-C-464-ONNCCE-2010 Industria de la Construcción-Mampostería-Determinación de la resistencia a compresión diagonal y módulo de cortante de muretes, así como determinación de la resistencia a compresión y módulo de elasticidad de pilas de mampostería de arcilla o concreto-Método de ensayo. México: ONNCCE.
ONNCCE (Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.). (2014). NMX-C-414-ONNCCE-2014 Industria de la Construcción-Cementantes Hidráulicos- Especificaciones y Método de ensayo. México: ONNCCE.
ONNCCE (Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.). (2004). NMX-C-122-ONNCCE-2004 Industria de la Construcción-Agua para concreto- Especificaciones. México: ONNCCE.
Santos, A. R., Veiga, M. R., Santos-Silva, A., & De Brito, J. (2020). Microstructure as a critical factor of cement mortars’ behaviour: The effect of aggregates’ properties. Cement and Concrete Composites, 111, 103628. https://doi.org/10.1016/j.cemconcomp.2020.103628
Scrivener, K., & Nonat, A., (2011). Hydration of cementitious materials, present and future. Cement and Concrete Research, 41, 651-665. https://doi.org/10.1016/j.cemconres.2011.03.026
Scrivener, K. (2004). The Interfacial Transition Zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
Tasong, W., Cripps, C., & Lynsdale, C. (1998a). Aggregate-cement chemical interaction. Cement and Concrete Research, 28(7), 1037-1048. Retrieved from https://www.academia.edu/25147926/Aggregate_cement_chemical_interactions
Tasong, W. A., Lynsdale, L., & Cripps, J. (1998b). Aggregate-cement paste interface. II: influence of aggregate physical properties. Cement and Concrete Research, 28(10), 1453-1465. Retrieved from https://www.academia.edu/25147923/Aggregate_cement_paste_interface_ii_influence_of_aggregate_physical_properties
Tasong, W. A., Lynsdale, L., & Cripps, J. (1999). Aggregate-cement paste interface. Part I. Influence of aggregate geochemistry. Cement and Concrete Research, 29, 1019-1025. Retrieved from https://www.academia.edu/25147935/Aggregate_cement_paste_interface_Part_I_Influence_of_aggregate_geochemistry
Vásquez, B. y Corrales, S. (2017). Industria del cemento en México: Análisis de sus determinantes. Problemas del Desarrollo, 48(188), 113-138. https://doi.org/10.1016/j.rpd.2017.01.006
Zang, M. H., & Gjorv, O. E. (1990). Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cement and Concrete Research, 20(4), 610-618. https://doi.org/10.1016/0008-8846(90)90103-5
Zhang, Y., & Chen, W. F. (1998). Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Purdue University: West Lafayette. Retrieved from https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1825&context=jtrp
Alexander, M. G., & Mindess, S. (2005). Aggregates in concrete. New York: Taylor & Francis.
Apostolopoulou, M., Armaghani, D. J., Bakolas, S., Douvika, M. G., Moropoulou, A., Asteris, P. G. (2019). Compressive strength of natural hydraulic lime mortars using soft computing techniques. Procedia Structural Integrity, 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122
ASTM (2011). ASTM C-019 Standard Test Method for Compressive Strength of Hydraulic Cement Mortar. ASTM International, West Conshohocken. Retrieved from www.astm.org
ASTM (2018). ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates, ASTM International.West Conshohocken. Retrieved from www.astm.org
Diamond, S. (2004). The microstructure of cement paste and concrete-a visual primer. Cement and concrete composites, 26, 919-933. https://doi.org/10.1016/j.cemconcomp.2004.02.028
Elsharief, A., Cohen, M., & Olek, M. (2003). Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cement and Concrete Research, 33, 1837-1845. https://doi.org/10.1016/S0008-8846(03)00205-9
Gamboa, L. M. (2019). ¿Cómo elegir un buen material pétreo para la elaboración de concretos hidráulicos hechos en obra? RUA, 11(21), 58-66. Disponible en https://rua.uv.mx/index.php/rua/article/view/66/51
Giraldo, M. A. y Tobón, J. I. (2006). Evolución mineralógica del cemento portland durante el proceso de hidratación. Dyna, 73(148), 69-81. Disponible en https://www.redalyc.org/articulo.oa?id=496/49614807
Gupta, L. K., & Vyas, A. K., (2018). Impact on mechanical properties of cement sand mortar containing waste granite powder. Construction and Building Materials, 191, 155-164. https://doi.org/10.1016/j.conbuildmat.2018.09.203
Guzmán, B. B., Cuevas, S. A., Barragán, T. R. & Sánchez, C. M. (2017). Incidencia de los componentes en la resistencia del mortero utilizado en Chilpancingo Guerrero. Innova Ingeniería. Publicaciones Técnicas de Investigación, 1(2). Disponible en https://innovaingenieria.uagro.mx/innova/index.php/innova/article/view/8/8
Haach, V. G., Vasconcelos, G., & Lourenço, P. B. (2011). Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25, 2980-2987. https://doi.org/10.1016/j.conbuildmat.2010.11.011
Juilland, P., Gallucci, E., Flatt, R., & Scrivener, K. (2010). Dissolution theory applied to the induction period in alite hydration. Cement and Concrete Research, 40, 831-844. https://doi.org/10.1016/j.cemconres.2010.01.012
Kabeer, K. I. S. A., & Vyas, A. K. (2018). Utilization of marble powder as fine aggregate in mortar mixes. Construction and Building Materials, 165, 321-332. https://doi.org/10.1016/j.conbuildmat.2018.01.061
Ke, Y., Ortola, S., Beaucour, A. L., & Dumontet, H. (2010). Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the interfacial transition zone (ITZ). Cement and Concrete Research, 40, 1590-1600. https://doi.org/10.1016/j.cemconres.2010.07.001
Kockal, N. U. (2016). Investigation about the effect of different fine aggregates on physical, mechanical and thermal properties of mortars. Construction and Building Materials, 124, 816-825. https://doi.org/10.1016/j.conbuildmat.2016.08.008.
Mahdinia, S., Eskandari-Naddaf, H., & Shadnia, R. (2019). Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method. Construction and Building Materials, 198, 27-4. https://doi.org/10.1016/j.conbuildmat.2018.11.265.
Mehta, K., & Monteiro, P. (2006). Concrete: Microstructure, properties, and materials (3rd ed.) New York: McGraw-Hill.
Monteiro, P. (1985). Microstructure of concrete and its influence on the mechanical properties. University of California Berkeley: California.
Neville, A. M., & Brooks, J. J. (2010). Concrete technology (2nd ed.). Essex, Prentice Hall.
Odler, I., (1998). Setting and hardening of portland cement. In P. C. Hewlett, Lea’s Chemistry of Cement and Concrete (4th ed.) Oxford: Butterworth-Heinemann.
ONNCCE (Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.). (2010). NMX-C-464-ONNCCE-2010 Industria de la Construcción-Mampostería-Determinación de la resistencia a compresión diagonal y módulo de cortante de muretes, así como determinación de la resistencia a compresión y módulo de elasticidad de pilas de mampostería de arcilla o concreto-Método de ensayo. México: ONNCCE.
ONNCCE (Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.). (2014). NMX-C-414-ONNCCE-2014 Industria de la Construcción-Cementantes Hidráulicos- Especificaciones y Método de ensayo. México: ONNCCE.
ONNCCE (Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.). (2004). NMX-C-122-ONNCCE-2004 Industria de la Construcción-Agua para concreto- Especificaciones. México: ONNCCE.
Santos, A. R., Veiga, M. R., Santos-Silva, A., & De Brito, J. (2020). Microstructure as a critical factor of cement mortars’ behaviour: The effect of aggregates’ properties. Cement and Concrete Composites, 111, 103628. https://doi.org/10.1016/j.cemconcomp.2020.103628
Scrivener, K., & Nonat, A., (2011). Hydration of cementitious materials, present and future. Cement and Concrete Research, 41, 651-665. https://doi.org/10.1016/j.cemconres.2011.03.026
Scrivener, K. (2004). The Interfacial Transition Zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
Tasong, W., Cripps, C., & Lynsdale, C. (1998a). Aggregate-cement chemical interaction. Cement and Concrete Research, 28(7), 1037-1048. Retrieved from https://www.academia.edu/25147926/Aggregate_cement_chemical_interactions
Tasong, W. A., Lynsdale, L., & Cripps, J. (1998b). Aggregate-cement paste interface. II: influence of aggregate physical properties. Cement and Concrete Research, 28(10), 1453-1465. Retrieved from https://www.academia.edu/25147923/Aggregate_cement_paste_interface_ii_influence_of_aggregate_physical_properties
Tasong, W. A., Lynsdale, L., & Cripps, J. (1999). Aggregate-cement paste interface. Part I. Influence of aggregate geochemistry. Cement and Concrete Research, 29, 1019-1025. Retrieved from https://www.academia.edu/25147935/Aggregate_cement_paste_interface_Part_I_Influence_of_aggregate_geochemistry
Vásquez, B. y Corrales, S. (2017). Industria del cemento en México: Análisis de sus determinantes. Problemas del Desarrollo, 48(188), 113-138. https://doi.org/10.1016/j.rpd.2017.01.006
Zang, M. H., & Gjorv, O. E. (1990). Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cement and Concrete Research, 20(4), 610-618. https://doi.org/10.1016/0008-8846(90)90103-5
Zhang, Y., & Chen, W. F. (1998). Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Purdue University: West Lafayette. Retrieved from https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1825&context=jtrp