Modelación matemática del transporte de fluidos bifásicos a través de medios fracturados: sistema de placas paralelas irregulares

Main Article Content

Edgardo Jonathan Suárez-Domínguez
Arturo Palacio-Pérez
Josué Francisco Pérez-Sánchez
Elena Francisca Izquierdo-Kulich


Se desarrolla un modelo matemático para predecir el comportamiento del flujo bifásico a través de un medio fracturado que se analiza como un sistema de placas paralelas irregulares mediante la dimensión fractal perpendicular y longitudinal al flujo. Los resultados predicen un patrón de flujo anular simétrico cuando se inyecta un fluido con mayor afinidad por la pared. Para fluidos con igual afinidad, esto se logra si el fluido menos viscoso se inyecta en la pared. El modelo puede describir la inyección de agua en yacimientos fracturados para incrementar la producción de crudo y, en comparación con otros, permite estimar el gradiente de presión, los perfiles de velocidad y el flujo másico de sistemas bifásicos. 

Article Details

Como citar
SUÁREZ-DOMÍNGUEZ, Edgardo Jonathan et al. Modelación matemática del transporte de fluidos bifásicos a través de medios fracturados: sistema de placas paralelas irregulares. CIENCIA ergo-sum, [S.l.], v. 29, n. 1, abr. 2022. ISSN 2395-8782. Disponible en: <>. Fecha de acceso: 20 mayo 2022 doi:
Ciencias exactas y aplicadas


Chang, J., & Yortsos, Y. C. (1990). Pressure transient analysis of fractal reservoirs. SPE Formation Evaluation, 5(01), 31-38.

Chen, C. Y., &Yan, P. Y. (2017). Radial flows in heterogeneous porous media with a linear injection scheme. Computers & Fluids, 142, 30-36.

Herrera-Hernández, E. C., Aguilar-Madera, C. G., Ocampo-Pérez, R., Espinosa-Paredes, G., & Núñez-López, M. (2019). Fractal continuum model for the adsorption-diffusion process. Chemical Engineering Science, 197, 98-108.

Huang, S., Yao, Y., Zhang, S., Ji, J., & Ma., R. (2018). A fractal model for oil transport in tight porous media. Transport in Porous Media, 121(3), 725-739.

Jamaloei, B. Y., Asghari, K., Kharrat, R., & Ahmadloo, F. (2010). Pore-scale two-phase filtration in imbibition process through porous media at high-and low-interfacial tension flow conditions. Journal of Petroleum Science and Engineering, 72(3-4), 251-269.

Jamaloei, B. Y., Babolmorad, R., & Kharrat, R. (2016). Correlations of viscous fingering in heavy oil waterflooding. Fuel, 179, 97-102.

Jian-Chao, C. (2014). A fractal approach to low velocity non-Darcy flow in a low permeability porous medium. Chinese Physics B, 23(4), 044701.

Matoug, M. M., & Gordon, R. (2018). Crude oil asphaltenes studied by terahertz spectroscopy. ACS Omega, 3(3), 3406-3412.

Mohammadi, S., Mahani, H., Ayatollahi, S., & Niasar, V. (2020). Impact of oil polarity on the mixing time at the pore scale in low salinity waterflooding. Energy & Fuels, 34(10), 12247-12259.

Nabizadeh, A., Adibifard, M., Hassanzadeh, H., Fahimpour, J., & Moraveji, M. K. (2019). Computational fluid dynamics to analyze the effects of initial wetting film and triple contact line on the efficiency of immiscible two-phase flow in a pore doublet model. Journal of Molecular Liquids, 273, 248-258.

Nikooey, A., Khaksar Manshad, A., & Ashoori, S. (2015). Dynamic pore scale modeling of asphaltene deposition in porous media. Petroleum Science and Technology, 33(8), 908-919.

Salehi-Shabestari, A., Raisee, M., & Sadeghy, K. (2017). Immiscible displacement of viscoplastic waxy crude oils: A numerical study. Journal of Porous Media, 20(5), 417-433.

Siles Garner, J., Sareen, A., & Longmire, E. (2019). Evolution of a liquid-liquid interface through a symmetric pore doublet model. Bulletin of the American Physical Society, 64.

Suárez-Domínguez, E. J., Palacio-Pérez, A., Pérez-Sánchez, J. F., & Izquierdo-Kulich, E. (2020). Flow pattern effect on the pressure drop of biphasic flow through porous media from a fractal dimension perspective. CienciaUAT, 14(2), 146.

Tang, M., Lu, S., Zhan, H., Wenqjie, G., & Ma, H. (2018). The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media. Advances in Water Resources, 113, 272-284.

Tripathy, A., Srinivasan, V., & Singh, T. N. (2018). A comparative study on the pore size distribution of different Indian shale gas reservoirs for gas production and potential CO2 sequestration. Energy & Fuels, 32(3), 3322-3334.

Tsakiroglou, C., Theodoropoulou, M., & Karoutsos, V. (2003). Fluid flow in fractured formations. In New paradigms in subsurface prediction (pp. 161-172). Berlin: Springer, Heidelberg.

Valdes-Perez, A., Pulido, H., Cinco-Ley, H., & Galicia-Muñoz, G. (2012). Discretization of the resistivity, capillary pressure and relative permeability for naturally fractured reservoirs. In Proceedings: Thirty-seventh workshop on geothermal reservoir engineering (pp. 1-9). SGP-TR-194.

Wang, S., Yu, B., Zheng, Q., Duan, Y., & Fang, Q. (2011). A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with randomly distributed fractal-like tree networks. Advances in Water Resources, 34(12), 1574-1580.

Yang, J., Bondino, I., Regaieg, M., & Moncorgé, A. (2017). Pore to pore validation of pore network modelling against micromodel experiment results. Computational Geosciences, 21(5-6), 849-862.

Zamula, Y. S., Batyrshin, E. S., Latypova, R. R., Abramova, O. A., & Pityuk, Y. A. (2019). Experimental study of the multiphase flow in a pore doublet model. Journal of Physics: Conference Series, 1421(1). IOP Publishing.

Zhao, M., He, H., Dai, C., Sun, Y., Fang, Y., Liu, Y., & Wu, Y. (2018). Enhanced oil recovery study of a new mobility control system on the dynamic imbibition in a tight oil fracture network model. Energy & Fuels, 32(3), 2908-2915.