Gravedad emergente: ¿La llave termodinámica del espacio-tiempo? La llave termodinámica del espaciotiempo.

Main Article Content

Luis Miguel Sánchez Hernández http://orcid.org/0000-0003-3867-5583

Resumen

Se exponen algunos aspectos de la incitante relación entre gravedad y termodinámica y cómo ésta ha llevado a proponer que la gravedad es un fenómeno emergente de origen termodinámico-estadístico más que una interacción fundamental. Para desarrollar esta idea, se presenta una breve revisión de los aspectos principales de la termodinámica de agujeros negros y el efecto Unruh. Después, se discute el trabajo de T. Jacobson y se esboza la noción de gravedad como fuerza entrópica propuesta por E. P. Verlinde. Finalmente, se discuten algunas implicaciones que resultan al considerar la gravedad como fenómeno emergente, en particular cómo este nuevo concepto puede ser importante para resolver algunos problemas que los modelos actuales de gravedad no han logrado solucionar. 

Article Details

Como citar
SÁNCHEZ HERNÁNDEZ, Luis Miguel. Gravedad emergente: ¿La llave termodinámica del espacio-tiempo?. CIENCIA ergo-sum, [S.l.], v. 27, n. 4, ago. 2020. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/12930>. Fecha de acceso: 28 nov. 2021 doi: https://doi.org/10.30878/ces.v27n4a5.
Sección
Número especial

Citas

Alsing, P. M., & Milonni, P. W. (2004). Simplified derivation of the Hawking-Unruh temperature for an accelerated observer in vacuum. American Journal of Physics, 72, 1524-1529. arXiv:quantph/0401170v2.

Bekenstein, J. D. (1972). Black holes and the second law. Letters Nuovo Cimento, 4, 737.

Bekenstein, J.D. (1973). Black holes and entropy. Physical Review D, 7, 2333.

Brustein, R., & Hadad, M. (2009). Einstein equations for generalized theories of gravity and the thermodynamic relation dQ = T dS are equivalent. Physical Review Letters, 103, 101301.

Cai, R. G., & Kim, S. P. (2005). First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker Universe. Journal of High Energy Physics, 2, [hep-th/0501055].

Callen, H. B. (1985). Thermodynamics and an introduction to thermostatics. John Wiley and Sons Inc.

Carter, B., Hawking, S. W., & Bardeen, J. M. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31, 161-170.

Chaichian, M., Oksanen, M., & Tureanu, A. (2011). On gravity as an entropic force. Physics Letters B, 702, 419-42. arXiv:1104.4650 [hep-th].

Elizalde, E. y Silva, P. J. (2008). f(R) gravity equation of state. Physical Review D, 78, 061501.

Fei-Quan Tu, Yi-Xin Chen, Bin Sun, & You-Chang Yang. (2018). Accelerated expansion of the universe based on emergence of space and thermodynamics of the horizon. Physics Letters B, 784, 411. arXiv:1707.06461 [gr-qc].

Granger, A. (2010). Thermodynamic gravity and the emergence of space with geometry (QFFF Dissertation). London: Imperial College. https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/dissertations/2010/Andrew-Granger-Dissertation.pdf

Hawking, S. W. (1976). Black holes and thermodynamics. Physical Review D, 13, 191-197.

Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43, 199-220.

Jacobson, T. (1995). Thermodynamics of space-time: The Einstein equation of state. Physical Review Letters, 75, 1260-1263.

Kobakhidze, A. (2011). Gravity is not an entropic force. Physical Review D, 83, 021502. arXiv:1009.5414 [hep-th]

Lopez-Monsalvo, C. S., Quevedo, H., & Bravetti, A. (2015). Maximally symmetric spacetimes emerging from thermodynamic fluctuations. arXiv:1503.08358v2 [gr-qc].

Moustos, D. (2017). Gravity as a thermodynamic phenomenon (M. Sc. Thesis). Greece: University of Patras. arXiv:1701.08967v1 [gr-qc].

Müller, I. (2007). A history of thermodynamics: The doctrine of energy and entropy. New York: Springer.

Nesvizhevsky, V. V., Boerner, H. G., & Gagarsky, A. M. (2002). Quantum states of neutrons in the Earth’s gravitational field. Nature, 415, 297-299

Padmanabhan, T. (2004). Gravity as elasticity of spacetime: A paradigm to understand horizon thermodynamics and cosmological constant. International Journal of Modern Physics, 13, 2293-2298. arXiv:gr-qc/0408051.

Padmanabhan, T. (2005). Holographic gravity and the surface term in the Einstein-Hilbert action. Brazilian Journal of Physics, 35, 362. arXiv:gr-qc/041206810]

Padmanabhan, T. (2010). Thermodynamical aspects of gravity: New insights. Reports on Progress in Physics, 73, 046901. arXiv:0911.5004v2 [gr-qc].

Padmanabhan, T. (2016). Journal of Physics: Conference Series, 701, 012018

Quevedo, H. (2007). Geometrothermodynamics. Journal of Mathematical Physics, 48, 013506.

Sánchez, A., Vázquez, A., & Quevedo, H. (2015). Relativistic like structure of classical thermodynamics. General Relativity and Gravitation, 47(4), 36.

Smolin, L. (2004). Atoms of space and time. Scientific American, 290(1), 66-75.

Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36, 6377. arXiv:hep-th/9409089.

Unruh, W.G. (1976). Notes on black hole evaporation. Physical Review D, 14, 870.

Verlinde, E. P. (2010). On the origin of gravity and the laws of newton. arXiv:1001.0785.

Verlinde, E. P. (2016). Emergent gravity and the dark universe. arXiv:1611.02269

Visser, M. J. (2011). Conservative entropic forces. Journal of High Energy Physics, 140.

Wald, R. M. (1984). General relativity. Chicago: The University of Chicago Press.

Wald, R. M. (1999). Gravitation, thermodynamics, and quantum theory. Classical and Quantum Gravity,16, A177-A190. arXiv:gr-qc/9901033.