Modelos Lagrangianos para la simulación de fluidos y su aplicación a la hidrodinámica marina

Main Article Content

Joel Sánchez-Mondragón http://orcid.org/0000-0002-9875-7380

Resumen

Se describe el método de movimiento de partículas semi-implícito (MPS), el cual es uno de los modelos Lagrangianos más representativos usados en la simulación de fluidos. Además, se especifican las ventajas y desventajas de las versiones del método MPS: una basada en la densidad de partículas, otra en la divergencia de la velocidad y la débilmente compresible. Adicionalmente, para demostrar la capacidad del método, estas versiones se aplican en el problema clásico de rompimiento de presa en dos dimensiones. De estos resultados, se comparan las distribuciones del campo de presiones en varias etapas de la simulación y el histórico de la presión de impacto en la pared del contenedor por la colisión con el fluido. 

Article Details

Como citar
SÁNCHEZ-MONDRAGÓN, Joel. Modelos Lagrangianos para la simulación de fluidos y su aplicación a la hidrodinámica marina. CIENCIA ergo-sum, [S.l.], v. 27, n. 4, jul. 2020. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/12727>. Fecha de acceso: 19 ago. 2022 doi: https://doi.org/10.30878/ces.v27n4a4.
Sección
Número especial

Citas

Ataie-Ashtiani, B., & Farhadi, L. (2006). A stable moving-particle semi implicit method for free surfaces flows. Fluid Dyn. Res., 38, 241-256.

Ataie-Ashtiani, B., Shobeyri, G., & Farhadi, L. (2006). Modified incompressible SPH method for simulating free surface problems. Fluid Dyn. Res., 40(9), 637-661.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P. (1996). Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Eng., 139, 3-47.

Dalrymple, R. A., & Rogers, B. D. (2006). Numerical modeling of water waves with the SPH method. Coast. Eng., 53(2), 141-147.

Edmond, Y. M. L., & Shao, S. (2002). Simulation of near-shore solitary wave mechanics by an incompressible SPH method. App. Ocean Res., 24(5), 275-286.

Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics-Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc., 181, 375-389.

Gingold, R. A., & Monaghan, J. J. (1982). Kernel estimates as a basis for general particle methods in hydrodynamics. J. Comput. Phys., 46, 429-453.

Gotoh, H., (2009). Lagrangian particle method as advanced technology for numerical wave flume. Int. J. Offshore Polar Eng., 19(3), 161-167.

Gotoh, H., Ikari, H., Memita, T., & Sakai, T. (2005). Lagrangian particle method of wave overtopping on a vertical seawall. Coastal Eng. J., 47, 157-181.

Gotoh, H., & Khayyer, A. (2016). Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy, 2(3), 251-278.

Gotoh, H., & Khayyer, A. (2018). On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Eng. J., 60(1), 79-103.

Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS Method-Lagrangian flow model for hydraulic engineering. Comput. Fluid Dyn. J., 9, 339-347.

Jaime-Ledezma, L. E., Sanchez-Mondragon, J., Vazquez-Hernandez, A. O., Morales-Viscaya, J. A., & Ochoa-Ruiz, G. (2019). Simulation of breaking waves on slop beaches integrating the MPS method into Iwagaki wave theory. J. Braz. Soc. Mech. Sci. Eng., 41(170).

Khayyer, A., & Gotoh, H. (2008). Development of CMPS method for accurate water-surface tracking in breaking waves. Coastal Eng. J., 50(2), 179-207.

Khayyer, A., & Gotoh, H. (2009). Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Eng., 56, 419-440.

Khayyer, A., & Gotoh, H. (2010). A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Appl. Ocean Res., 32, 124-131.

Khayyer, A., & Gotoh, H. (2011). Enhancement of stability and accuracy of the moving particle semi-implicit method. J. Comput. Phys., 230, 3093-3118.

Kolahdoozan, M., Ahadi, M. S., & Shirazpoor, S. (2014). Effect of turbulence closer models on the accuracy of MPS method for the viscous free surface flow. Sci. Iran., 21(4), 1217-1230.

Kondo, M., & Koshizuka, S. (2011). Improvement of stability in Moving Particle Semi-implicit method. Int. J. Numer. Meth. Fluids., 65, 638-654.

Koshizuka, S., Nobe, A., & Oka, Y. (1998). Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Meth. Fluids., 26, 751-769.

Koshizuka, S., & Oka, Y. (1996). Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng., 123, 421-434.

Koshizuka, S., Suzuki, Y., & Harada, T. (2008). Multi-physics simulation for micro fluidic devices using Moving Particle Semi-implicit method. WCCM8 and ECCOMAS 2008, June 30-July 5, Venice.

Kouh, J. S., Chien, H. P., Chang, C. C., & Chen Y. J. (2007). Simulation of a ship with partially filled tanks rolling in waves by applying Moving Particle Semi-implicit method. International Conference on Engineering Education, September 3-September 7.

Lee, B. H., Park, J. C., Kim, M. H., & Hwang, S. C. (2011). Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput. Methods Appl. Mech. Eng., 200, 1113-1125.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J., 82, 1013-1024.

Sahebari, A. J., Jin, Y. C., & Shakibaeinia, A. (2011). Flow over sills by the MPS mesh-free particle method. J. Hydraul. Res., 49(5), 649-656.

Sanchez-Mondragon, J. (2016). On the stabilization of unphysical pressure oscillations in MPS method simulations. Int. J. Numer. Methods Fluids, 82, 471-492.

Sanchez-Mondragon, J., & Vazquez-Hernandez, A. O. (2018). Solitary wave collisions by double-dam-broken simulations with the MPS method. Eng. Comput., 35(1), 53-70.

Shakibaeinia, A., & Jin, Y. C. (2010). A weakly compressible MPS method for modeling of open-boundary free-surface flow. Int. J. Numer. Methods Fluids, 63(10), 1208-1232.

Shao, S., (2006). Simulation of breaking wave by SPH method coupled with model. J Hydraul. Res., 44(3), 338-349.

Shao, S. D., & Lo, E. Y. M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour., 26(7), 787-800.

Shibata, K., Koshizuka, S., Sakai, M., & Tanizawa, K. (2012). Lagrangian simulations of ship-wave interactions in rough seas. Ocean Eng., 42, 13-25.

Shibata, K., Koshizuka, S., Sakai, M., & Tanizawa, K. (2011). Transparent boundary condition for simulating nonlinear water waves by a particle method. Ocean Eng., 38, 1839-1848.

Shibata, K., Koshizuka, S., & Tanizawa, K. (2009). Three-dimensional numerical analysis of shipping water onto a moving ship using a particle method. J. Mar. Sci. Technol., 14, 214-227.

Sueyoshi, M., Zdravko, R., Kishev, R., & Kashiwagi, M. (2005). A particle method for inmpulsive loads caused by violent sloshing. Abstract for the 20th Int. Workshop on water waves and floating bodies, Spitsbergen (Norway), 29th May- 1st June.

Tanaka, M., & Masunaga, T., (2010). Stabilization and smoothing of pressure in MPS method by Quasy-Compressibility. J. Comput. Phys., 229, 4279-4290.

Xu, T., & Jin, Y. C. (2016). Improvements for accuracy and stability in a weakly-compressible particle method. Comput. Fluids, 137, 1-14.

Zhu, X. S., Cheng, L., Lu, L., & Teng, B. (2011). Implementation of the moving particle semi-implicit method on GPU. Science China, 54(3), 523-532.