Los retos actuales en la ingeniería de proteínas

Main Article Content

Angélica Jiménez Rosales


Las proteínas son la maquinaria molecular que sustenta la vida, y el hombre ha buscado adaptarlas para resolver sus necesidades. En esta revisión, se presentan los fundamentos sobre las proteínas, sus niveles estructurales, plegamiento, las enzimas y su actividad catalítica y las limitantes de sus aplicaciones debido a su naturaleza. De manera simplificada, se ilustran las bases conceptuales y metodológicas de la ingeniería de proteínas, su alcance y las perspectivas de su aplicación en la ciencia y la innovación de procesos. Se concluye que la ingeniería de proteínas es una rama que continúa implementando herramientas computacionales e ingeniería gen´ética-proteómica por medio de la cual es posible la generación de nuevas proteínas para ampliar sus aplicaciones en diversos procesos.

Article Details

Como citar
JIMÉNEZ ROSALES, Angélica. Los retos actuales en la ingeniería de proteínas. CIENCIA ergo-sum, [S.l.], v. 26, n. 3, oct. 2019. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/10899>. Fecha de acceso: 17 ago. 2022 doi: https://doi.org/10.30878/ces.v26n3a9.
Espacio del divulgador


Afroz, Q. M., Khan, K. A., Ahmed, P., & S., U. (2015). Enzymes used in dairy industries. International Journal of Applied Research, 1(10), 523-527.

Ahrens, J. B., Nunez-Castilla, J., & Siltberg-Liberles, J. (2017). Evolution of intrinsic disorder in eukaryotic proteins. Cellular and Molecular Life Sciences, 74(17), 3163-3174. https://doi.org/10.1007/s00018-017-2559-0

Aliye, N., Fabbretti, A., Lupidi, G., Tsekoa, T., & Spurio, R. (2015). Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics. Applied Microbiology and Biotechnology, 99(3), 1205-1216. https://doi.org/10.1007/s00253-014-5975-1

Amara, A. A. A. F. (2013). Pharmaceutical and industrial protein engineering: where we are? Pakistan Journal of Pharmaceutical Sciences, 26(1), 217-232.

Arnold, F. H., & Georgiou, G. (Eds.). (2003). Directed Evolution Library Creation: Methods and Protocols. Humana Press. Retrieved from https://www.springer.com/gp/book/9781588292858

Bunzel, H. A., Garrabou, X., Pott, M., & Hilvert, D. (2018). Speeding up enzyme discovery and engineering with ultrahigh-throughput methods. Current Opinion in Structural Biology, 48, 149-156. https://doi.org/10.1016/j.sbi.2017.12.010

Carroni, M., & Saibil, H. R. (2016). Cryo electron microscopy to determine the structure of macromolecular complexes. Methods, 95, 78-85. https://doi.org/10.1016/j.ymeth.2015.11.023

Carter, M., & Shieh, J. (2015). Chapter 10-Molecular Cloning and Recombinant DNA Technology. In M. Carter & J. Shieh (Eds.), Guide to Research Techniques in Neuroscience (2nd ed., pp. 219-237). San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-800511-8.00010-1

Chatham, J. C., & Blackband, S. J. (2001). Nuclear magnetic resonance spectroscopy and imaging in animal research. ILAR Journal, 42(3), 189-208. https://doi.org/10.1093/ilar.42.3.189.

Cooper, G. M. (2000). The Central Role of Enzymes as Biological Catalysts. In G. M. Cooper (Ed.), The Cell: A Molecular Approach. (2nd ed.) Sunderland (MA): Sinauer Associates. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK9921/

Cressey, D., & Callaway, E. (2017). Cryo-electron microscopy wins chemistry Nobel. Nature News, 550(7675), 167. https://doi.org/10.1038/nature.2017.22738

Eduard Buchner-Facts. (2018). Retrieved from https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1907/buchner-facts.html

Guan, L.-J., Ohtsuka, J., Okai, M., Miyakawa, T., Mase, T., Zhi, Y., … Tanokura, M. (2015). A new target region for changing the substrate specificity of amine transaminases. Scientific Reports, 5, 10753. https://doi.org/10.1038/srep10753

Hospital, A., Goñi, J. R., Orozco, M., & Gelpi, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37-47. https://doi.org/10.2147/AABC.S70333

Hutter, H. (2012). Fluorescent protein methods: Strategies and applications. Methods in Cell Biology, 107, 67-92. https://doi.org/10.1016/B978-0-12-394620-1.00003-5

Jimenez-Rosales A., & Flores-Merino M. V. (2018). Tailoring Proteins to Re-Evolve Nature: A Short Review. Molecular Biotechnology, 60(12), 946-974. https://doi.org/10.1007/s12033-018-0122-3.

Kjaergaard, M., & Kragelund, B. B. (2017). Functions of intrinsic disorder in transmembrane proteins. Cellular and Molecular Life Sciences, 74(17), 3205-3224. https://doi.org/10.1007/s00018-017-2562-5

Lokko, Y., Heijde, M., Schebesta, K., Scholtès, P., Van Montagu, M., & Giacca, M. (2018). Biotechnology and the bioeconomy-Towards inclusive and sustainable industrial development. New Biotechnology, 40, 5-10. https://doi.org/10.1016/j.nbt.2017.06.005

Mallela, S. P. S., Havale, S. H., Boddepalli, N. R., Gunji, N., Mokkapati, B. S., & Limited, S. L. (2013). A novel process for the preparation of sitagliptin. Retrieved from https://www.google.com/patents/WO2013114173A1?cl=en

Manas, L. (2016). Winner 2016. TAF. Retrieved from http://taf.fi/millennium-technology-prize/winner-2016/

Milczek, E. M. (2018). Commercial applications for enzyme-mediated protein conjugation: New developments in enzymatic processes to deliver functionalized proteins on the commercial scale. Chemical Reviews, 118(1), 119-141. https://doi.org/10.1021/acs.chemrev.6b00832

NAS (National Academy of Sciences). (2017). Raymond and Beverly Sackler. Prize in Convergence Research. Retrieved from http://www.nasonline.org/programs/awards/2017/Arnold.html

Packer, M. S., & Liu, D. R. (2015). Methods for the directed evolution of proteins. Nature Reviews Genetics, 16(7), 379. https://doi.org/10.1038/nrg3927

Patel, A. K., Singhania, R. R., & Pandey, A. (2017). Chapter 2-Production, purification, and application of microbial enzymes. In G. Brahmachari (Ed.), Biotechnology of Microbial Enzymes (pp. 13-41). https://doi.org/10.1016/B978-0-12-803725-6.00002-9

Pellis, A., Haernvall, K., Pichler, C. M., Ghazaryan, G., Breinbauer, R., & Guebitz, G. M. (2016). Enzymatic hydrolysis of poly(ethylene furanoate). Journal of Biotechnology, 235, 47-53. https://doi.org/10.1016/j.jbiotec.2016.02.006

Peterson, M. E., Daniel, R. M., Danson, M. J., & Eisenthal, R. (2007). The dependence of enzyme activity on temperature: Determination and validation of parameters. The Biochemical Journal, 402(2), 331-337. https://doi.org/10.1042/BJ20061143

Poluri, K. M., & Gulati, K. (2017). Protein Engineering Techniques: Gateways to Synthetic Protein Universe. Springer Singapore. Retrieved from https://www.springer.com/gp/book/9789811027314

Ramírez, C. L., Martí, M. A., & Roitberg, A. E. (2016). Steered molecular dynamics methods applied to enzyme mechanism and energetics. Methods in Enzymology, 578, 123-143. https://doi.org/10.1016/bs.mie.2016.05.029.

RCSB PDB (2018). Homepage. Retrieved from https://www.rcsb.org/

Rigoldi, F., Donini, S., Redaelli, A., Parisini, E., & Gautieri, A. (2018). Review: Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 2(1), 011501. https://doi.org/10.1063/1.4997367

Roger Y. Tsien-Facts. (2018). Retrieved from https://www.nobelprize.org/prizes/chemistry/2008/tsien/facts/

Rosenman, D. J., Huang, Y., Xia, K., Fraser, K., Jones, V. E., Lamberson, C. M., … Bystroff, C. (2014). Green-lighting green fluorescent protein: Faster and more efficient folding by eliminating a cis-trans peptide isomerization event. Protein Science: A Publication of the Protein Society, 23(4), 400-410. https://doi.org/10.1002/pro.2421

Safran, R. J., & Nosil, P. (2012). Speciation: The Origin of New Species. Nature Education Knowledge, 3(10), 17.
Shi, Y. (2014). A glimpse of structural biology through X-ray crystallography. Cell, 159(5), 995-1014. https://doi.org/10.1016/j.cell.2014.10.051

Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: Industrial progress in 21st century. 3 Biotech, 6(2). https://doi.org/10.1007/s13205-016-0485-8

The Nobel Prize in Chemistry 2013. (2018, June 15). Nobelprize.org. Retrieved from https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/

The Nobel Prize in Chemistry 2018. (2018, October 10). NobelPrize.org. Retrieved from https://www.nobelprize.org/prizes/chemistry/2018/summary/

Thomson, S. C., & Vallon, V. (2018). Renal effects of incretin-based diabetes therapies: Pre-clinical predictions and clinical trial outcomes. Current Diabetes Reports, 18(5), 28. https://doi.org/10.1007/s11892-018-0991-7

Tiwari, V. (2016). In vitro engineering of novel bioactivity in the natural enzymes. Frontiers in Chemistry, 4(39). https://doi.org/10.3389/fchem.2016.00039

Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67(1), 509-544. https://doi.org/10.1146/annurev.biochem.67.1.509

Urbanek, A. K., Rymowicz, W., Strzelecki, M. C., Kociuba, W., Franczak, Ł., & Mirończuk, A. M. (2017). Isolation and characterization of arctic microorganisms decomposing bioplastics. AMB Express, 7(1), 148. https://doi.org/10.1186/s13568-017-0448-4

US EPA, O. (2013a, March 8). Presidential Green Chemistry Challenge: 2006 Greener Synthetic Pathways Award [Overviews and Factsheets]. Retrieved from https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2006-greener-synthetic-pathways-award

US EPA, O. (2013b, March 12). Presidential Green Chemistry Challenge: 2010 Greener Reaction Conditions Award [Overviews and Factsheets]. Retrieved from https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2010-greener-reaction-conditions-award

Valavanidis, A. (2017). Biocatalysis and directed evolution in the pharmaceutical industry. New developments for ‘green’ synthetic methods of high value pharmaceuticals. Pharmakeftiki, 15.

Wang, H.-W., & Wang, J.-W. (2016). How cryo-electron microscopy and X-ray crystallography complement each other. Protein Science, 26(1), 32-39. https://doi.org/10.1002/pro.3022

Wójcikowski, M., Ballester, P. J., & Siedlecki, P. (2017). Performance of machine-learning scoring functions in structure-based virtual screening. Scientific Reports, 7, 46710. https://doi.org/10.1038/srep46710

Yang, J., Ruff, A. J., Arlt, M., & Schwaneberg, U. (2017). Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries. Biotechnology and Bioengineering, 114(9), 1921-1927. https://doi.org/10.1002/bit.26327

Yu, Z., Chen, L., Park, Y., Cong, Q., Han, X., Zhao, B., & Jung, Y. M. (2016). The mechanism of an enzymatic reaction-induced SERS transformation for the study of enzyme-molecule interfacial interactions. Physical Chemistry Chemical Physics, 18(46), 31787-31795. https://doi.org/10.1039/C6CP05978C