Calentamiento global y la fisiología de ectotermos: El caso de tres lacertilios mexicanos
Main Article Content
Resumen
Los hallazgos recientes muestran que el calentamiento global puede causar la extinción y el cambio en la distribución espacial de diversas especies de reptiles. Se ha propuesto, que en respuesta, los lacertilios podrían migrar en un gradiente altitudinal, pero no se considera a la hipóxia (escasez de oxígeno) como un factor que podría limitar la migración. Aquí discutimos las posibles adecuaciones en ciertas características morfo-fisiológicas que podrían permitir a los ectotermos migrar sobre un gradiente altitudinal aún con los efectos negativos de la hipóxia. Con esto podemos comenzar a estudiar a profundidad la vulnerabilidad de los ectotermos ante el calentamiento global que depende no solo de su biología térmica, sino también de su fisiología.
Article Details
Citas
Andrews, R. M. (1998). Geographic variation in field body temperature of Sceloporus lizards. Journal of Thermal Biology, 23, 329-334.
Ariano-Sánchez, D., & Salazar, G. (2015). Spatial ecology of the endangered Guatemalan beaded lizard Heloderma charlesbogerti (Sauria: Helodermatidae), in a tropical dry forest of the Motagua Valley, Guatemala. Mesoamerican Herpetology, 2(1), 64-74.
Arredondo, J., González-Morales, J. C., Rodríguez-Antolín, J., Bastiaans, E., Monroy-Vilchis, O., Manjarrez, J., & Fajardo, V. (2017). Histological Characteristics of gills and dorsal skin in Ambystoma leorae and Ambystoma rivulare: Morphological changes for living at high altitude. International Journal of Morphology, 35(4), 1590-1596.
Barry, R. G., & Chorley, R. J. (2003). Atmosphere, weather, and climate. New York: Routledge Taylor & Francis Group,.
Beck, D. (2006). Biology of Gila monster and beaded lizards. California: University of California Press.
Birchard, G. F., Kilgore, D. L., & Bogss, D. F. (1984). Respiratory gas concentrations and temperatures within the burrows of three species of burrow-nesting birds. The Wilson Bulletin, 96, 451-456
Bouverot, P. (1985). Adaptation to altitude-hypoxia in Vertebrates. Berlin: Springer-Verlag.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., & Jones P. D. (2006). Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. Journal de Geophysical Research, 111, D12106.
Caballero, M., Lozano, S. y Ortega, B. (2007). Efecto invernadero, calentamiento global y cambio climático: una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10), 2-12.
Crowley, S. R. (1985). Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: Support for a conservative view of termal physiology. Oecologia, 66, 219-225.
Feria-Ortíz, M., Nieto-Montes de Oca, A., & Salgado-Ugarte, I. (2001). Diet and reproductive biology of the viviparus lizard Sceloporus torquatus torquatus (Squamata: Phrynosomatidae). Journal of Herpetology, 35(1), 104-112
Flores-Villela, O. A., & Gerez, P. (1994). Biodiversidad y conservación en México: vertebrados, vegetación y uso de suelo. México: CONABIO-UNAM.
González-Morales, J. C., Quintana, E., Díaz-Albiter, E. H., Guevara-Fiore, P., & Fajardo, V. (2015). Is the erythrocyte size a strategy to avoid hypoxia in Wiegmann’s Torquate Lizards (Sceloporus torquatus)? Field evidence. Canadian Journal of Zoology, 93, 377-382.
González-Morales, J. C., Beamonte-Barrientos, R., Bastiaans, E., Guevara-Fiore, P., Quintana, E., & Fajardo, V. (2017). A mountain or a plateau? Hematological traits vary nonlinearly with altitude in Highland lizard. Physiological and Biochemical Zoology, 90(6), 638-645.
González-Morales, J. C., Rivera-Rea, J., Moreno-Rueda, G., Bastiaans, E., Díaz de la Vega-Pérez, A. H., Bautista-Ortega, A., & Fajardo, V. (2020). To be small and dark is advantageous for gaining heat in mezquite lizards, Sceloporus grammicus (Squamata: Phrynosomatidae). Biological Journal of the Linnean Society. In press.
Guadarrama, S., Domínguez-Vera, H., Díaz-Albiter, H. M., Quijano, A., … Bastiaans E. (2020). Hypoxia by altitude and welfare of captive Beaded lizards (Heloderma horridum) in Mexico: Hematological approaches. Journal of Applied Animal Welfare Science, 23(1), 74-83.
He, J., Xiu, M., Tang, X., Yue, F., Wang, N., Yang, S., & Chen, Q. (2013). The different mechanisms of hypoxic acclimatization and adaptation in lizard Phrynocephalus vlangalii living on Qinghai-Tibet Plateau. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319(3), 117-123.
Hicks, J. W. (2002). The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. American Journal of Physiology, 17, 241-245
Hillman, S. S. (2009). Ecological and environmental physiology of amphibians. New York: Oxford University Press.
IPCC (Intergovernmental Panel on Climate Change). (2018). Summary for Policymakers of IPCC Special Report on Global Warming of 1.5°C approved by governments. IPCC.
Lemos-Espinal, J. A., & Ballinger R. E. (1995). Comparative termal ecology of the high-altitude lizard Sceloporus grammicus on the eastern slope of the Iztaccihuatl Volcano, Puebla, Mexico. Canadian Journal of Zoology, 73, 2184-2191.
Méndez de la Cruz, F. R. y Gutiérrez-Mayén, M. G. (1991). Variación de la robustez física de Sceloporus torquatus (Sauria: Iguanidae) y sus implicaciones sobre la temporada de reproducción. Acta Zoológica Mexicana, 46, 1-12
Ortega, Z., Mencia, A., & Pérez-Mellado, V. (2016). Adaptative seasonal shifts in the termal preferences of the lizard Iberolacerta galani (Squamata: Lacertidae). Journal of Thermal Biology, 62, 1-6.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., … Barnola, J. M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429-436.
Pough, F. H. (1980). The adventages of ectothermy for tetrapods. Am. Nat., 115, 92-112.
Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., …Savitzky, A. H. (2001). Herpetology. New York: Prentice Hall.
Rios, R. L., Rodríguez de, R. F. J., Velázquez, R. A. S., & Hernández, F. A. A. (2013). Morfometría geométrica del corazón de Hyla plicata a través de un gradiente altitudinal en el eje Neovolcánico Mexicano. The International Journal of Morphology, 3, 905-910.
Rivera-Rea, J., González-Morales, J. C., Bastiaans, E., & Fajardo, V. (2018). SCELOPORUS TORQUATUS (Torquate Lizard). Selected body temperature. Herpetological Review, 49(3).
Ruiz, G., Rosenmann, M., & Veloso, A. (1983). Respiratory and hematological adaptation to high altitude in Telmantobius frog from Chilean Andes. Comparative Biochemistry and Physiology A, 76, 109-114.
Ruiz, G., Rosenmann, M., & Veloso, A. (1989). Altitudinal distribution and blood values in the toad, Bufo spinulosus Wiegmann. Comparative Biochemistry and Physiology, 94(4), 643-646.
Sinervo, B., Méndez- de la Cruz, F. R., Miles, D. B., Heulin, B., … Bastiaans, E. (2010). Erosion of lizard diversity by climate change and altered niches. Science, 328, 894-899.
Sinervo, B., Miles, D. B., Wu, Y., Méndez-de la Cruz, F. R., … Kirchhofet, S. (2018). Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai-Tibetan Plateau. Integrative Zoology, 13, 450-470
Snyder, G. K., & Weathers, W. W. (1997) Activity and oxygen consumption during hypoxic exposure in high altitude and lowland sceloporine lizards. Journal of Comparative Physiology B, 117, 291-301.
Storz, J. F., & Moriyama, H. (2008) Mechanims of hemoglobin adaptation to high altitude hypoxia. High Altitude Medicine & Biology, 9(2), 148-157.
Uribe-Peña, Z. A., Ramírez-Bautista, A., & Casas-Andreu, G. (1999). Anfibios y reptiles de las serranías del Distrito Federal, México. UNAM: Instituto de Biología.
Wheathers, W., & White, W. (1972). Hematological observations on populations of the lizard Sceloporus occidentalis from sea level and altitude. Herpetologica, 28(2), 172-175.