Spatial Analysis of COVID-19 in Zacatecas, Mexico: Local spatial patterns and influential factors Local spatial patterns and influential factors

Main Article Content

Mónica Terán-Hernández http://orcid.org/0000-0002-4714-5579
Juan Campos-Alanís http://orcid.org/0000-0002-5391-2447
Bruno Rivas Santiago http://orcid.org/0000-0002-1521-1519
Irma Elizabeth González Curiel http://orcid.org/0000-0002-0044-9196

Resumen

Spatial analysis-based planning (SABP) is vital for addressing priority issues. The study aimed to analyze local spatial patterns and factors influencing the distribution of COVID-19 in Zacatecas through GIS and geostatistical methods. The Bayesian rate was calculated and GWLR models adjusted. Local patterns were evident, showing a relationship between COVID-19 and comorbidities, marginalization index, and 911 calls for gender violence. Three significant hot spots were identified in areas with greater inequalities. Isn’t just about identifying a hot spot, is analyzing that the causal relationship between comorbidities and COVID-19 is particularly pronounced, these are the places where we can think in terms of SABP to support public health policy to modify pre-existing conditions not just about this current pandemic.

Article Details

Como citar
TERÁN-HERNÁNDEZ, Mónica et al. Spatial Analysis of COVID-19 in Zacatecas, Mexico: Local spatial patterns and influential factors. CIENCIA ergo-sum, [S.l.], v. 32, sep. 2024. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/22384>. Fecha de acceso: 25 jun. 2025 doi: https://doi.org/10.30878/ces.v32n0a8.
Sección
Ciencias sociales

Citas

Alves, A. T. J., Raposo, L. M., & Nobre, F. F. (2021). Spatial analysis of the sociodemographic characteristics, comorbidities, hospitalization, signs, and symptoms among hospitalized coronavirus disease 2019 cases in the state of Rio de Janeiro, Brazil. International Journal of Health Services, 52(1), 38-46.https://doi.org/10.1177/00207314211044991
Arregocés, H. A., Rojano, R., & Restrepo, G. (2021). Effects of lockdown due to the COVID-19 pandemic on air quality at Latin America’s largest open-pit coal mine. Aerosol and Air Quality Research, 21(8), 200664. https://doi.org/10.4209/aaqr.200664
Bauer, C., Zhang, K., Lee, M., Fisher‐Hoch, S. P., Guajardo, E., McCormick, J. B., De La Cerda, I., Fernández, M. E., & Reininger, B. M. (2021). Correction: Census tract patterns and contextual social determinants of health associated with COVID-19 in a Hispanic population from South Texas: A Spatiotemporal perspective. JMIR public health and surveillance, 7(8), e32870. https://doi.org/10.2196/32870
Bello‐Chavolla, O. Y., González-Díaz, A., Antonio-Villa, N. E., Fermín‐Martínez, C. A., Márquez‐Salinas, A., Vargas‐Vázquez, A., Bahena-López, J. P., García-Peña, C., Aguilar-Salinas, C. A., & Gutiérrez‐Robledo, L. M. (2020). Unequal impact of structural health determinants and comorbidity on COVID-19 Severity and lethality in Older Mexican Adults: Considerations Beyond chronological aging. The Journals of Gerontology, 76(3), e52-e59. https://doi.org/10.1093/gerona/glaa163
Campos, J., Ramírez, L. G., & Garrocho, C. (2020). Inclusion of the spatial variable in the measurement of relative living conditions in Mexican Cities. Papeles de Poblacion, 6(103), 53–88. https://doi.org/10.22185/24487147.2020.103.03
Correa, M. G. Á., Rı́os, E. V., Galicia-Rodríguez, L., Vargas-Daza, E. R., Vázquez, G. F., Amaro, S. J. M., Pinal, V. R., Álvarez, J. D., & Beltrán, S. S. (2022). Enfermedades crónicas degenerativas como factor de riesgo de letalidad por COVID-19 en México. Revista panamericana de salud pública, 46(1). https://doi.org/10.26633/rpsp.2022.40
Da Silveira Arruda, N., Gallego, M. C. Z., Zapata, H. D. G., & Cardona, K. A. V. (2022). Una aproximación multidimensional al análisis de los impactos causados por las condiciones de la pandemia de COVID-19 en el área metropolitana del Valle de Aburrá, Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía, 31(2), 377-394. https://doi.org/10.15446/rcdg.v31n2.96293
Deguen, S., & Kihal-Talantikite, W. (2021). Geographical Pattern of COVID-19-Related Outcomes over the pandemic period in France: a Nationwide Socio-Environmental Study. International Journal of Environmental Research and Public Health, 18(4), 1824. https://doi.org/10.3390/ijerph18041824
De La Luz Hernández-Flores, M., Escobar-Sánchez, J., Paredes-Zarco, J. E., Kelly, G. A. F., & Carranza-Ramírez, L. (2020). Prediction and potential spatially explicit spread of COVID-19 in Mexico’s megacity north periphery. Healthcare, 8(4), 453. https://doi.org/10.3390/healthcare8040453
Deonarine, A., Lyons, G., Lakhani, C. M., & De Brouwer, W. (2021). Identifying communities at risk for COVID-19–Related burden across 500 US cities and within New York City: Unsupervised learning of the coprevalence of health indicators. JMIR public health and surveillance, 7(8), e26604. https://doi.org/10.2196/26604
Del Pilar Bedoya Paucar, M., Paucar, B. O. B., & Piloso, O. X. B. (2020). COVID-19 y la violencia contra la mujer. RECIMUNDO, 4(4), 242-249. https://doi.org/10.26820/recimundo/4.(4).octubre.2020.242-249
DOF. (2021). No Title. Diario Oficial de La Federación. https://www.dof.gob.mx/nota_detalle.php?codigo=5609647&fecha=08/01/2021#gsc.tab= 0
Estefanía, R. D., Naomi, P., Montserrat, R., Gerardo, B., & Rivera-Vázquez, P. (2021). Covid-19 and chronic diseases, an analysis in Mexico. Revmeduas. https://doi.org/10.28960/revmeduas.2007-8013.v11.n1.008
Fotheringham, A. S., & Brunsdon, C. (2010). Local forms of spatial analysis. Geographical Analysis, 31(4), 340-358. https://doi.org/10.1111/j.1538-4632.1999.tb00989.x
Gatrell, A. C., Elliott, S. J. (2014). Geographies of health: An Introduction. John Wiley & Sons.
García-Gutiérrez, J.A. (2019). Cálculo de emisión de polvo en plantas de trituración de piedra. Avances, 2(2). Instituto de Información Científica y Tecnológica.
Goverment of Mexico (2022, January 30). COVID-19 México. https://coronavirus.gob.mx
Gupta, A., Bherwani, H., Gautam, S., Anjum, S., Musugu, K., Kumar, N., Anshul, A., & Kumar, R. (2020). Air pollution Aggravating COVID-19 lethality? Exploration in Asian cities using statistical models. Environment, Development and Sustainability, 23(4), 6408-6417. https://doi.org/10.1007/s10668-020-00878-9
INEGI (2022, January 30). Estadística de defunciones registradas. Boletín. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/DR/DR-Ene- jun2022.pdf
Iyanda, A. E., Adeleke, R., Lu, Y., Osayomi, T., Adaralegbe, A., Lasode, M. K., Chima-Adaralegbe, N. J., & Osundina, A. M. (2020). A Retrospective cross-national examination of COVID-19 outbreak in 175 countries: A multiscale geographically weighted regression analysis. Journal of Infection and Public Health, 13(10), 1438-1445. https://doi.org/10.1016/j.jiph.2020.07.006
Kang, D., Choi, H. J., Kim, J., & Choi, J. (2020). Spatial epidemic dynamics of the COVID-19 outbreak in China. International Journal of Infectious Diseases, 94(1), 96-102. https://doi.org/10.1016/j.ijid.2020.03.076
Kim, S., & Castro, M. C. (2020). Spatiotemporal pattern of COVID-19 and government response in South Korea. International Journal of Infectious Diseases, 98, 328-333. https://doi.org/10.1016/j.ijid.2020.07.004
Kyung SY, Jeong SH. (2020). Particulate-Matter Related Respiratory Diseases. Tuberc Respir Dis, 83(2), 116-121. doi: 10.4046/trd.2019.0025.
López-Hernández, E., & Rubio, D. (2020). Reflexiones sobre la violencia intrafamiliar y violencia de género durante emergencia por COVID-19. CienciAmérica, 9(2), 312-321. https://doi.org/10.33210/ca.v9i2.319
Méndez-Frausto, G., Godina-González, S., Rivas-Santiago, C.E., Nungaray-Anguiano, E., Mendoza-Almanza, G., Rivas-Santiago, B., Galván-Tejada, C.E., Gonzalez-Curiel, I.E. (2022). Downregulation of sCD40 and sCTLA4 in Recovered COVID-19 Patients with Comorbidities. Pathogens, 11(10),1128. https://doi: 10.3390/pathogens11101128.
Miller, H. J. (2004). Tobler’s first law and spatial analysis. Annals of The Association of American Geographers, 94(2), 284-289. https://doi.org/10.1111/j.1467-8306.2004.09402005.x
Moonsammy, S., Oyedotun, T. D. T., Renn-Moonsammy, D., & Oyedotun, T. D. (2021). COVID-19 modelling in the Caribbean: Spatial and statistical assessments. Spatial and Spatio-temporal Epidemiology, 37, 100416. https://doi.org/10.1016/j.sste.2021.100416
O’Sullivan, D. (2003). Geographically Weighted Regression: The Analysis of spatially Varying Relationships, by A. S. Fotheringham, C. Brunsdon, and M. Charlton. Geographical Analysis, 35(3), 272-275. https://doi.org/10.1111/j.1538-4632.2003.tb01114.x
Ramírez‐Aldana, R., Gómez-Verján, J. C., Bello‐Chavolla, O. Y., & Naranjo, L. (2022). A spatio-temporal study of state-wide case-fatality risks during the first wave of the COVID-19 pandemic in Mexico. Geospatial Health, 17(s1). https://doi.org/10.4081/gh.2022.1054
Ramírez, I. J., & Lee, J. (2020). COVID-19 emergence and social and Health determinants in Colorado: A Rapid Spatial analysis. International Journal of Environmental Research and Public Health, 17(11), 3856. https://doi.org/10.3390/ijerph17113856
Raymundo, C. E., Oliveira, M. C., De Araújo Eleutério, T., André, S. R., Da Silva, M. G., Da Silva Queiroz, E. R., & De Andrade Medronho, R. (2021). Spatial analysis of COVID-19 incidence and the sociodemographic context in Brazil. PLOS ONE, 16(3), e0247794. https://doi.org/10.1371/journal.pone.0247794
Salazar, M. T. S. (2020). Atlas de vulnerabilidad urbana ante COVID-19 en las Zonas Metropolitanas de México. UNAM Instituto de Geografia. http://www.igg.unam.mx/covid-19/Vista/archivos/atlas/ZM_zacatecas.pdf
Terán-Hernández M. y González-Curiel I.E. (2023). Planeación Espacial Estratégica. Análisis Espacio-temporal. Dirección de fomento editorial y publicaciones de la UASLP. ISBN 978-607-535-342-5
Wang, Q., Dong, W., Yang, K., Ren, Z., Huang, D., Zhāng, P., & Wang, J. (2021). Temporal and spatial analysis of COVID-19 transmission in China and its influencing factors. International Journal of Infectious Diseases, 105, 675-685. https://doi.org/10.1016/j.ijid.2021.03.014