Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method

Main Article Content

Maximino Pérez Maldonado http://orcid.org/0000-0002-6785-2203
Haret C. Rosu http://orcid.org/0000-0001-5909-1945
Elizabeth Flores Garduño http://orcid.org/0000-0002-5715-0347

Resumen

We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the Ginzburg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from the standard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton pulses of both arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity and the dispersion of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-autonomous solitons. 

Article Details

Como citar
PÉREZ MALDONADO, Maximino; C. ROSU, Haret; FLORES GARDUÑO, Elizabeth. Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method. CIENCIA ergo-sum, [S.l.], v. 27, n. 4, nov. 2020. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/12725>. Fecha de acceso: 19 ago. 2022 doi: https://doi.org/10.30878/ces.v27n4a3.
Sección
Número especial

Citas

Ablowitz, M. J., Prinari, B., & Trubatch, A. (2004). Discrete and continuous nonlinear Schrödinger systems. Cambrige University Press. https://doi.org/10.1007/b11728.

Agrawal, G. P. (1991). Optical pulse propagation in doped fiber amplifiers, Phys. Rev. A., 44(11), 7493-7501. https://doi.org/10.1103/PhysRevA.44.7493.

Agrawal, G. P. (2001). Nonlinear fibers optics. Elsevier Science.

Akhmediev, N., & Afanasjev, V. (1995). Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation. Phys. Rev. Lett., 75(12), 2320-2324. https://doi.org/10.1103/PhysRevLett.75.2320.

Akhmediev, N., Afanasjev, V., & Soto-Crespo, J. M. (1996). Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation. Phys. Rev. E., 53(1), 1190-1201. https://doi.org/10.1103/PhysRevE.53.1190.

Akhmediev, N. & Ankiewicz, A. (2005). Adrian (Eds.), Dissipative Solitons, Lecture Notes in Physics, 661. Springer-Verlag Berlin Heidelberg.

Biswas, A. (2002). Dispersion-managed solitons in optical fibers, J. Optics A., 4(1), 84-97. https://doi.org/10.1088/1464-4258/4/1/315.

Centurion, M., Porter, M. A., Kevrekidis, P. G. & Psaltis, D. (2006). Nonlinearity management in optics: Experiment, theory, and simulation, Phys. Rev. Lett., 97, 033903-1-033903-4. https://doi.org/10.1103/PhysRevLett.97.033903.

Conte, R., & Musette, M. (1995). Exact solutions to the complex Ginzburg-Landau equation of nonlinear optics. Pure Appl. Opt., 4, 315-320. https://doi.org/10.1088/0963-9659/4/4/005.

Facao, M., & Carvalho, M. I. (2015). Existence and stability of solutions of the cubic complex Ginzburg-Landau equation with delayed Raman scattering. Phys. Rev. E., 92, 022922-1-022922-5. https://doi.org/10.1103/PhysRevE.55.4783.

Fang, F., & Xiao, Y. (2006). Stability of chirped bright and dark soliton-like solution of cubic complex Ginzburg-Landau equation with variable coefficients. Optics Communications, 268, 305-310. https://doi.org/10.1016/j.optcom.2006.07.014.

Fewo, S., Atangana, J., Kenfack-Jiotsa, A., & Kofane, T. (2005). Dispersion-managed solitons in the cubic complex Ginzburg-Landau equation as perturbations of nonlinear Schrödinger equation. Opt. Comm., 252, 138-149. https://doi.org/10.1016/j.optcom.2005.03.031.

Hasegawa, A. (2000). Massive WDM and TDM Soliton Transmission Systems. Kluwer Academic Publishers.

Hasegawa, A., & Matsumoto, M. (2003). Optical Solitons in Fibers. Springer.

He, J., & Li, Y. (2001). Designable integrability of the variable coefficient nonlinear Schrödinger equations. Stud. Appl. Math., 126, 1-15. https://doi.org/10.1111/j.1467-9590.2010.00495.x.

Hirooka, T., Nakada, T. & Hasegawa, A. (2000). Feasibility of densely dispersion managed soliton transmission at 160 Gb/s. IEEE Photon. Technol. Lett. 12(6), 633-635. https://doi.org/10.1109/68.849067.

Malomed, B. A. (1991). Bound solitons in the Nonlinear Schrödinger/Ginzburg-Landau equation. In J. D. Fournier, & P. L. Sulem (Eds.), Large Scale Structures in Nonlinear Physics. Lecture Notes in Physics, 392. Springer, Heidelberg. Springer-Verlag.

Malomed, B. (2006). Soliton Management in Periodic Systems. Springer. https://doi.org/ 10.1007/0-387-29334-5.
Pérez-Maldonado, M. & Rosu, H. (2015). Solitones no autónomos en fibras ópticas. Rev. Mex. Fís., 61, 351-355. https://rmf.smf.mx/ojs/rmf/article/view/4161

Porsezian, K., Hasegawa, A., Serkin, V., Belyaeva, T., & Ganapathy, R. (2007). Dispersion and nonlinear management for femtosecond optical solitons. Phys. Lett. A, 361, 504-508. https://doi.org/10.1016/j.physleta.2006.10.022.

Serkin, V. N., & Hasegawa, A. (2000). Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett., 85, 4502-4505. https://doi.org/10.1103/PhysRevLett.85.4502.

Serkin, V. N., & Belyaeva, T. (2001). High-energy optical Schrödinger solitons. JETP Letters, 74, 573-576. https://doi.org/10.1134/1.1455063

Serkin, V. N. & Hasegawa, A. (2002). Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion. IEEE J. Sel. Top. in Quantum Electron. 8, 418-431. https://doi.org/10.1109/JSTQE.2002.1016344.

Serkin, V. N., Hasegawa, A., & Belyaeva, T. (2004). Comment on exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett., 92, 199401-1. https://doi.org/10.1103/PhysRevLett.92.199401.

Serkin, V. N., Hasegawa, A. & Belyaeva, T. (2007). Nonautonomous solitons in external potentials. Phys. Rev. Lett., 98, 074102-1-074102-4. https://doi.org/10.1103/PhysRevLett.98.074102.

Soto-Crespo, J. M., Akhmediev, N. N., Afanasjev, V. V., & Wabnitz, S. (1997). Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion. Phys. Rev. E., 55(4), 4783-4796. https://doi.org/10.1103/PhysRevE.55.4783

Talanov, V. (1970). Focusing of light in cubic media. JETP Lett., 11, 199-201. Retrieved from http://www.jetpletters.ac.ru/ps/1719/article26119.pdf

Turitsyn, S. (1998). Theory of guiding-center breathing soliton propagation in optical communication systems with strong dispersion management, in new trends in optical soliton transmission systems. A. Hasegawa (Ed.). Kluwer Academic Publishers, Dordrecht, The Netherlands, 225-243. https://doi.org/10.1364/OL.22.001544

Turitsyn, S. K., Doran, N. J., Nijhof, J. H. B., Mezentsev, V. K., Shaefer, T., & Forysiak, W. (1999). Dispersion-Managed Solitons, in Theoretical Challenges and Industrial Perspectives. V. E. Zakharov, & S. Wabnitz, S. (Eds. Kluwer.). Academic Publishers, Dordrecht, The Netherlands. Retrieved from https://www.lpsm.paris/pageperso/garnier/publi/reviewsolitonoptics.pdf

Turitsyn, S. K., Shapiro, E. G., Medvedev, S. B., Fedoruk, M. P., & Mezentsev, V. K. (2003). Physics and mathematics of dispersion-managed optical solitons. Comptes Rendus Physique, Acad´emie des sciences/´Editions scientifiques et m´edicales, 4, 145-161.

Zhao, D., Luo, H.-G., & He, X.-G. (2010). On the nonautonomous nonlinear Schrödinger equations and soliton management. AIP Conf. Proc., 1212, 213-218. https://doi.org/10.1063/1.3367048.