One-qubit purity in terms of the discrete Wigner transform

Main Article Content

Manuel Avila Aoki

Resumen

An explanation and an illustration of the meaning of a discrete phase-space is given. The class of a discrete Wigner transform (DWT) for the specific case of a one-qubit state is introduced. We derive the one-qubit state formalism around its formulation in terms of the DWT in detail. A novel structure of a one-qubit purity in terms of the DWT is introduced. We find a criterion for stating when a one-qubit state is either mixed or pure


 

Article Details

Como citar
AVILA AOKI, Manuel. One-qubit purity in terms of the discrete Wigner transform. CIENCIA ergo-sum, [S.l.], v. 27, n. 1, ene. 2020. ISSN 2395-8782. Disponible en: <https://cienciaergosum.uaemex.mx/article/view/11278>. Fecha de acceso: 19 ene. 2020 doi: https://doi.org/10.30878/ces.v27n1a9.
Sección
Ciencias exactas y aplicadas

Citas

Bianucci, P., Miquel C., Paz, J. P., & Saraceno, M. (2002). Discrete Wigner function and the phase space representation of quantum computers. Physics Letters A, 297(5-6), 353-358.

Buot, F. A. (1974). Method for calculating Tr Hn in solid-state theory. Physical Review B, 10, 3700-3705.

Cohen, L., & Scully, M. (1986). Joint Wigner distribution for spin-1/2 particles. Foundations of Physics, 16, 295-310.

Feynman, R. P. (1987). Chapter 13. In B. J. Hiley, & D. Peat. (Eds.). Quantum implications: Essays in honour of David Bohm. Routledge.

Galetti, D., & Toledo Piza de, F. R. (1988). An extended Weyl-Wigner transformation for special finite spaces. Physica A: Statistical Mechanics and its Applications, 149, 267-282.

Hannay, J. H., & Berry, M. V. (1980), Quantization of linear maps on a torus-fresnel diffraction by a periodic grating. Physica D: Nonlinear Philomena, 1, 267-290.

Hillary, M., O’Connell, R. F., Scully M. O., & Wigner E. P. (1984). Distribution functions in physics: Fundamentals. Physics Reports, 106, 121-167.

Koniorczyk, M., Buzek, V., & Janszky, J. (2001). Wigner-function description of quantum teleportation in arbitrary dimensions and continuous limit. Physical Review A, 64, 034301-1-034301-4.

Lopez, C. C., & Paz, J. P. (2003). Phase-space approach to the study of decoherence in quantum walks. Physical Review A, 68(5), 052305-2-052305-12.

Miquel, C., Paz, J. P., & Saraceno, M. (2002). Quantum computers in phase space. Physical Review A, 65, 062309-1-062309-12.

Nielsen, M. A., & Chuang, I. (2000). Quantum Computation and Quantum Information, Cambridge University Press.

Paz, J. P. (2002). Discrete Wigner functions and the phase space representation of quantum teleportation. Physical Review A, 65, 062311-32-062311-39.

Wigner, E. P. (1932). On the quantum corrections for thermodynamic equilibrium. Physcal Review, 40, 749-757.

Wootters, W. K. (1987). A Wigner-function formulation of finite-state quantum mechanics. Annals of Physics, 176, 1-21.